Department of AI, University of Seoul Machine Learning and Artificial Intelligence Lab

BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning

Towards realistic adaptation of pre-trained vision models

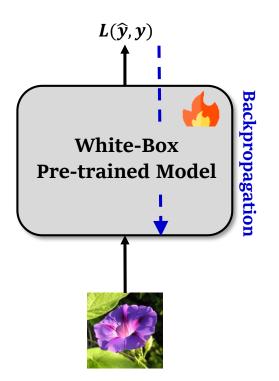
Changdae Oh¹, Hyeji Hwang¹, Hee-young Lee², YongTaek Lim¹, Geunyoung Jung¹, Jiyoung Jung¹, Hosik Choi¹, and Kyungwoo Song³

¹ University of Seoul ² Sungkyunkwan University

³Yonsei University

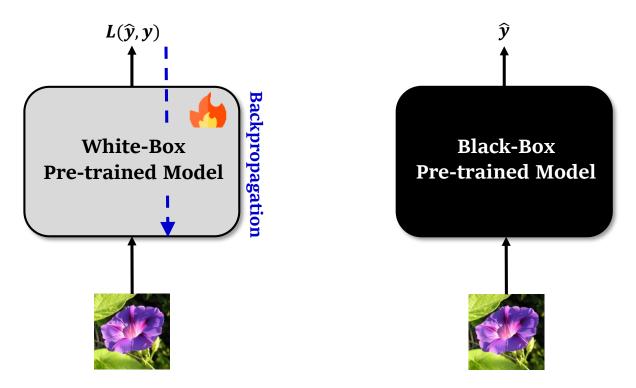
Problem define

- Adapting a large-scale pre-trained model (PTM) to diverse downstream tasks
- Existing works assume the parameter accessability and large-memory capacity



Problem define

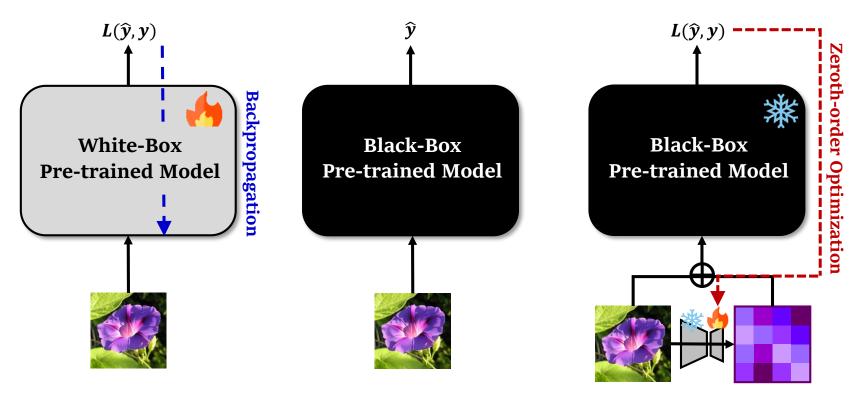
- Adapting a large-scale pre-trained model (PTM) to diverse downstream tasks
- Existing works assume the parameter accessability and large-memory capacity



However... PTMs are provided as *inference-only black-box API* service in many real-world applications!!

Problem define

- Adapting a large-scale pre-trained model (PTM) to diverse downstream tasks
- Existing works assume the parameter accessability and large-memory capacity



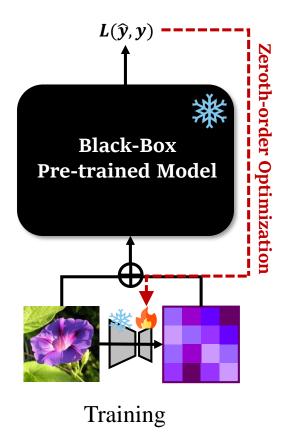
BlackVIP

Our approach: *black-box visual prompting (BlackVIP)*

- Let's tune the input!! rather than the model components.
- Learning is progressed by just forward evaluations without backpropagation

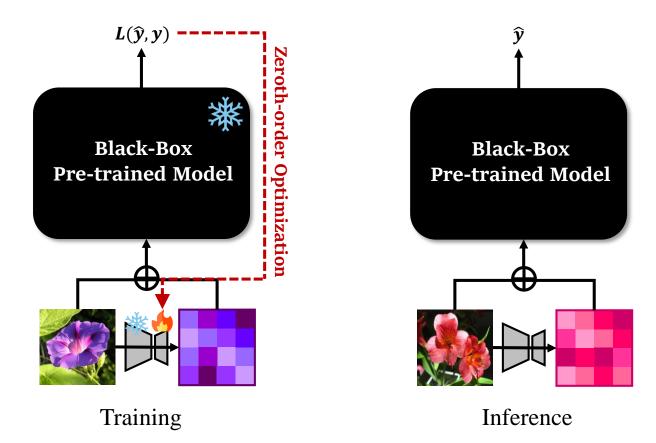
BlackVIP in a nutshell

- Learns visual prompts (perturbations) to steer the model to produce desired output
- Prompts are obtained by training a **prompt generator** via **zeroth-order optimization**



BlackVIP in a nutshell

- Learns visual prompts (perturbations) to steer the model to produce desirable output
- Prompts are obtained by training a **prompt generator** via **zeroth-order optimization**
- After training, BlackVIP automatically generates an **input-dependent visual prompt** for a query image to be better recognized by the black-box API model



Validation

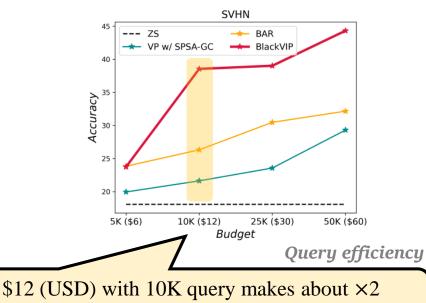
- On two synthetic datasets and 14 transfer learning benchmarks that cover diverse tasks
- From the perspective of few-shot adaptability, robustness, and practical usefulness

Method	Caltech	Pets	Cars	Flowers	Food	Aircraft	SUN	DTD	SVHN	EuroSAT	RESISC	CLEVR	UCF	IN	Avg.	Win
VP (white-box)	94.2	90.2	66.9	86.9	81.8	31.8	67.1	61.9	60.4	90.8	81.4	40.8	74.2	67.4	71.1	13
ZS	92.9	89.1	65.2	71.3	86.1	24.8	62.6	44.7	18.1	47.9	57.8	14.5	66.8	66.7	57.6	-
BAR	93.8	88.6	63.0	71.2	84.5	24.5	62.4	47.0	34.9	77.2	65.3	18.7	64.2	64.6	61.4	6
VP w/ SPSA-GC	89.4	87.1	56.6	67.0	80.4	23.8	61.2	44.5	29.3	70.9	61.3	25.8	64.6	62.3	58.8	4
BlackVIP	93.7	89.7	65.6	70.6	86.6	25.0	64.7	45.2	44.3	73.1	64.5	36.8	69.1	67.1	64.0	13

Train set

Test set

Method	16-			Biased MNIST						
NELIOG	10-	Shot	32-Shot							
	$\rho = 0.8$	ho = 0.9	ho = 0.8	ho = 0.9						
VP (white-box)	57.92	43.55	69.65	42.91						
ZS	37.56	37.25	37.56	37.25						
BAR	53.25	53.07	53.93	53.30						
VP w/ SPSA-GC	60.34	53.86	59.58	51.88						
BlackVIP	66.21	62.47	65.19	64.47						
	1	Robustness								
When spurious correlation exists, BlackVIP holds										
strong robustness un	der the	distribu	tion shi	ift						



performance compared to no-adaptation baseline

Motivation

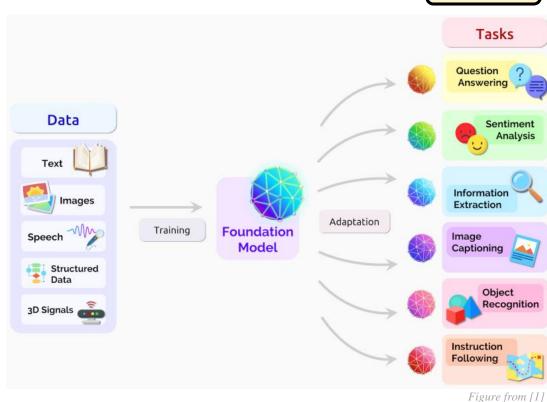
Pre-trained General-purpose Models

Motivation

- The era of surging large-scale pre-trained models (PTMs)
 - Build a strong generalist model [1], then adapt it to a wide range of downstream tasks!

Our focus

- Problem
 - *How can we (pre-) train the general-purpose models?*
 - How can we adapt the PTMs to our specific problems?

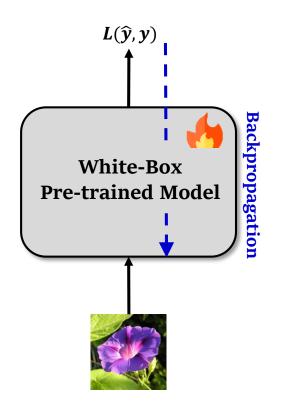


[1] On the Opportunities and Risks of Foundation Models, Bommasani et al. 2021

Adapting PTMs

Motivation

• Existing approaches • FT: Update entire model parameters



Full Fine-tuning (FT)

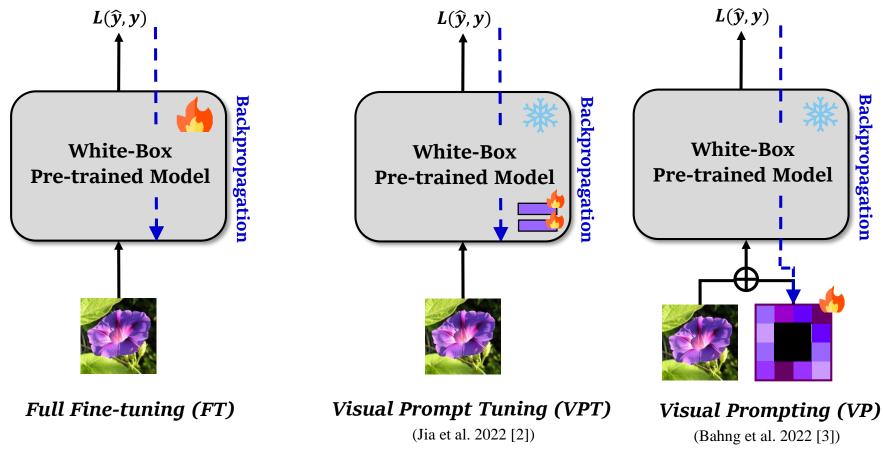
Adapting PTMs

Parameter Efficient Transfer Learning

(PETL)

Motivation

- Existing approaches FT: Update entire model parameters
 - VPT: Update only a small amount of parameters inside the model
 - VP: Update a single image perturbation (visual prompt)



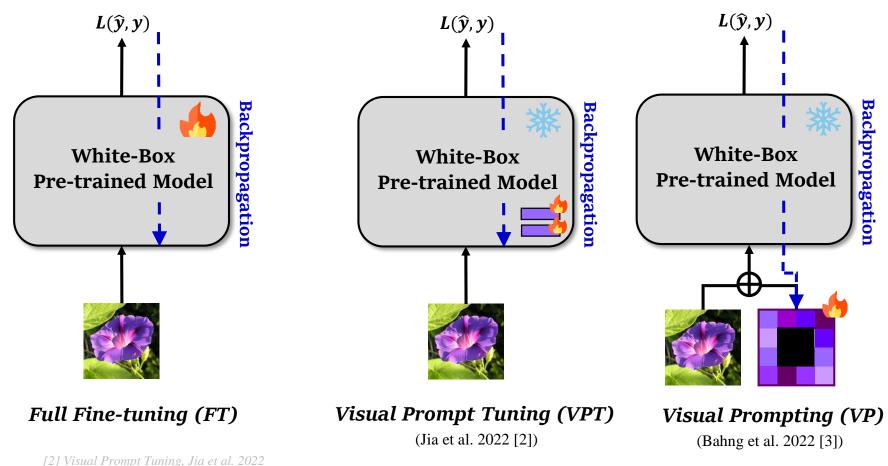
^[2] Visual Prompt Tuning, Jia et al. 2022

[3] Exploring Visual Prompts for Adapting Large-Scale Models, Bahng et al. 2022

Adapting PTMs

Motivation

- Existing methods rely on two optimistic assumptions:
 - 1. The **model parameters are fully accessible**.
 - 2. A sufficiently large memory capacity is equipped to fine-tune the model.



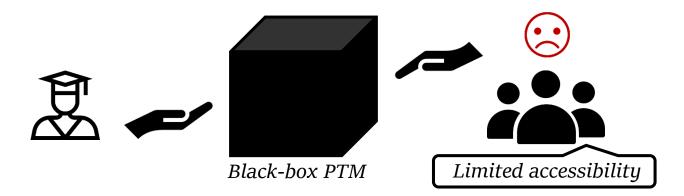
^[3] Exploring Visual Prompts for Adapting Large-Scale Models, Bahng et al. 2022

Challenges of adapting PTMs in real-world

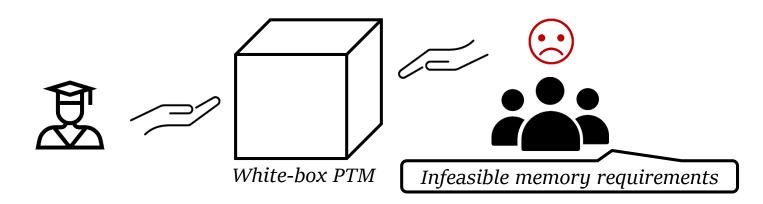
Motivation

• However, due to commercial issues,

PTMs in many real-world applications are provided in the form of **black-box API**



• Even though the full model is leased with parameters, end-users (usually low-resourced) are hard to meet the **large memory requirements**



Challenges of adapting PTMs in real-world

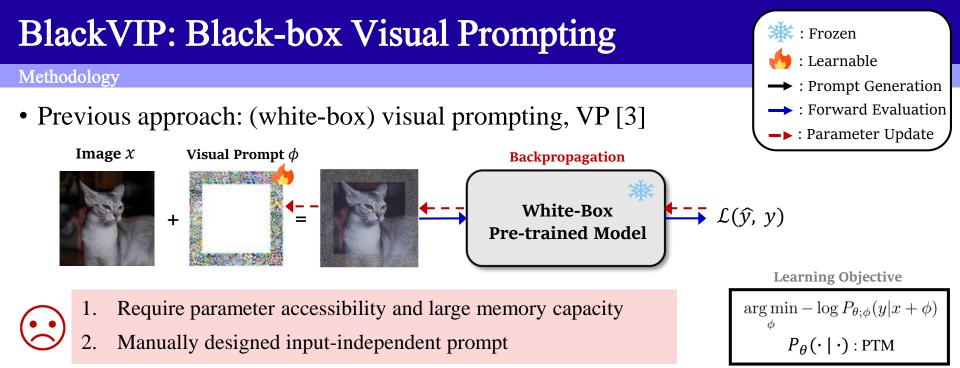
Motivation

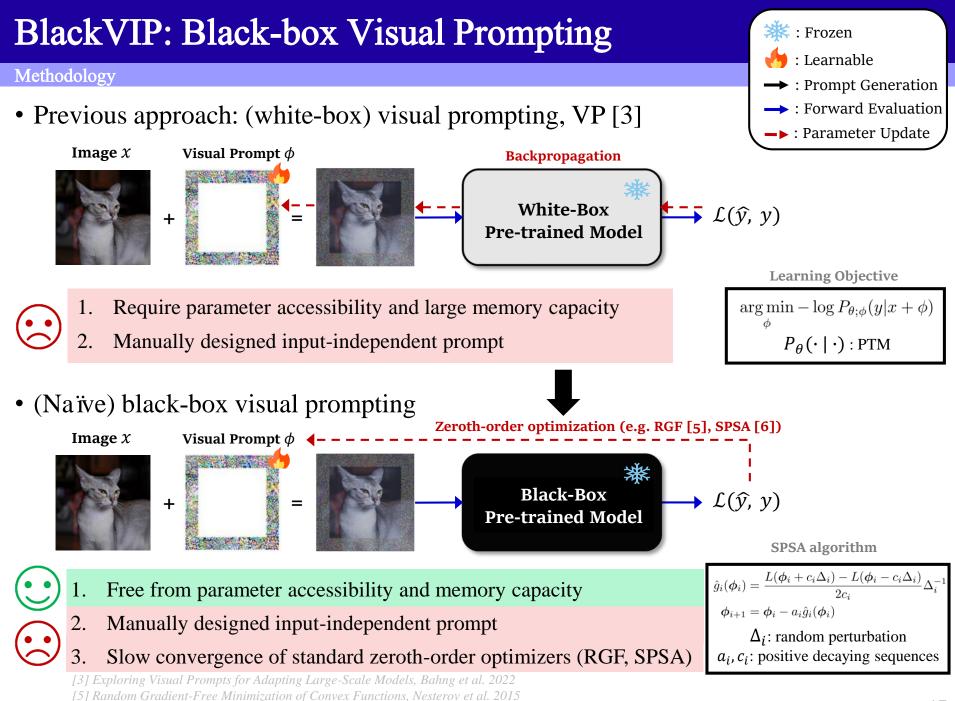
- However, due to commercial issues, PTMs in many real-world applications are provided in the form of **black-box API**
- Even though the full model is leased with parameters, end-users (usually low-resourced) are hard to meet the **large memory requirements**

Therefore, the desirable adaptation method should be: Free from dependence on parameter accessibility Efficient (and/or cheap) enough to be affordable for end-users

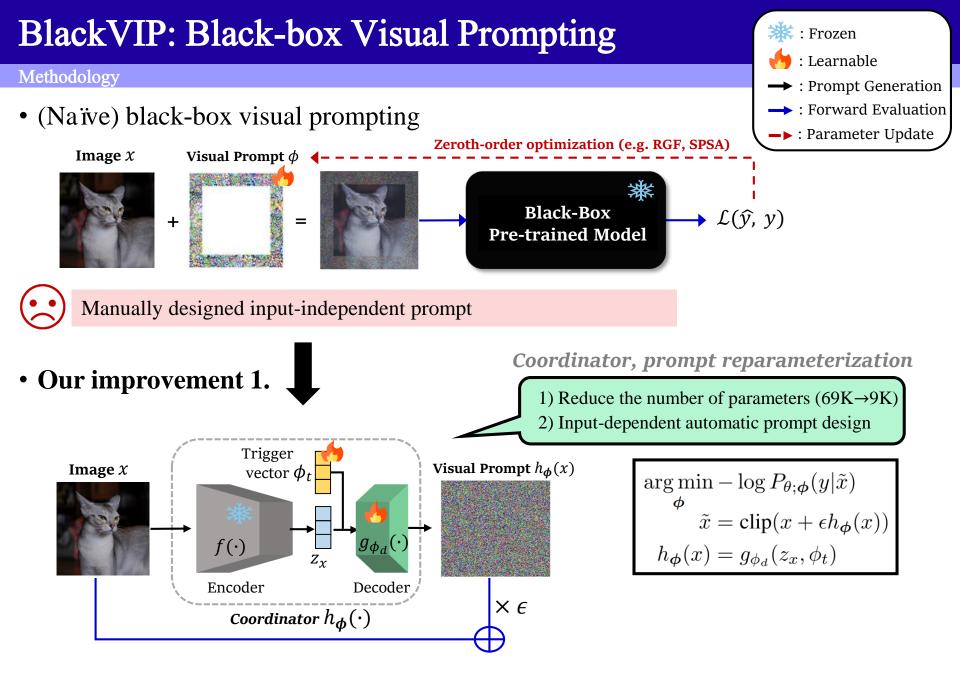
Our Approach

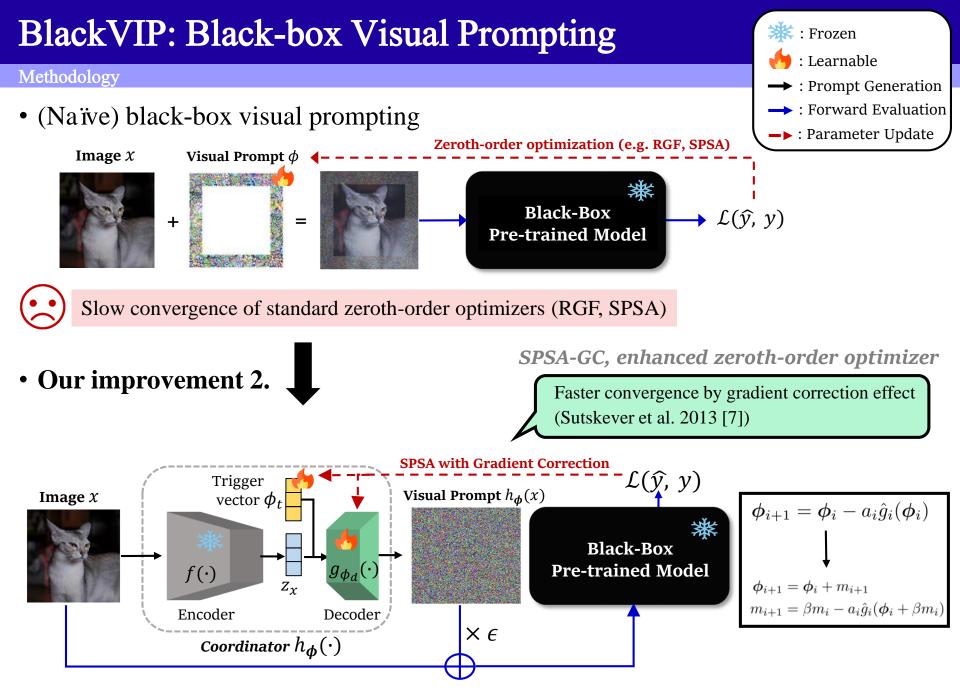
Black-box Visual Prompting





[6] Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, Spall et a





[7] On the importance of initialization and momentum in deep learning, Sutskever et al. 2013

Empirical Results

- Robustness on distribution shift
- Robustness on object-location shift
- Few-shot adaptation
- Practical Usefulness

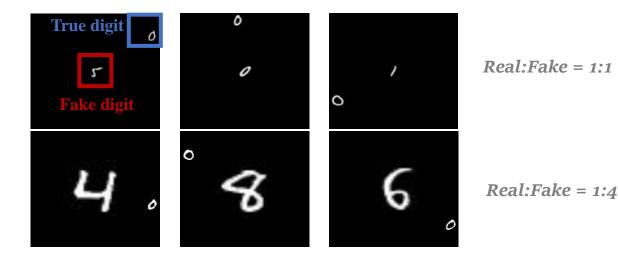
All experiments are done on a few-shot evaluation setting with CLIP pre-trained ViT/B-16 backbone model.

Robustness Analysis

Empirical Results

- Biased MNIST [8]
 - There is a **spurious correlation** between the background colors and target digits.

- Loc-MNIST
 - Unlike most benchmarks where the objects are centered, Loc-MNIST arbitrarily distributes the target object to the edge side of the image.
 - We additionally put the random fake digit in the center to increase task difficulty.



[8] Learning De-biased Representations with Biased Representations, Bahng et al. 2020

Robustness Analysis

Empirical Results

- Existing methods struggle to deal with spurious correlation.
- Our input-dependent image-shaped visual prompt can be beneficial in domain generalization setting!

		Loc-MNIST						
Method	$\begin{array}{c} 16-8\\ \rho=0.8 \end{array}$	Shot $\rho = 0.9$	$\begin{array}{c} 32-3\\ \rho=0.8 \end{array}$	Shot $\rho = 0.9$	16-9 1:1	Shot 1:4	32-S 1:1	hot 1:4
VP (white-box)	57.92	43.55	69.65	42.91	86.79	86.54	90.18	92.09
ZS BAR VP w/ SPSA-GC BlackVIP	37.56 53.25 60.34 66.21	37.25 53.07 53.86 62.47	37.56 53.93 59.58 65.19	37.25 53.30 51.88 64.47	29.70 33.98 16.21 69.08	22.70 26.05 25.68 60.86	29.70 34.73 18.43 76.97	22.70 27.72 30.13 67.97

• BlackVIP shows significantly better performance than baseline methods under object-non-centered and adversarially-disturbanced setting.

Few-shot Adaptation on Diverse Domains

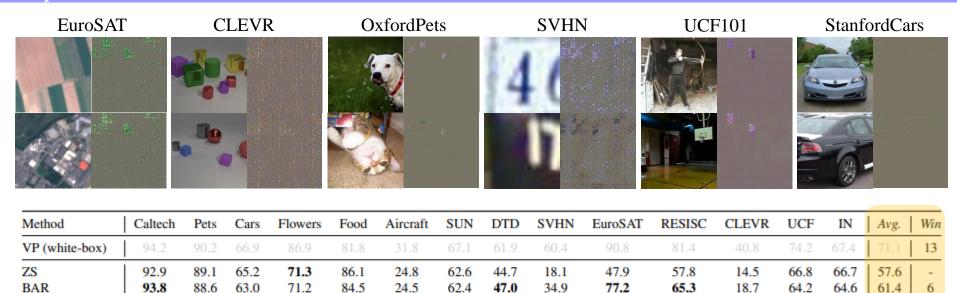
Empirical Results

VP w/ SPSA-GC

BlackVIP

89.4

93.7



61.2

64.7

44.5

45.2

29.3

44.3

70.9

73.1

61.3

64.5

25.8

36.8

64.6

69.1

62.3

67.1

58.8

64.0

4

13

BlackVIP achieves consistent performance improvements (13/14) across diverse image domains.

23.8

25.0

80.4

86.6

by controlling the attention of PTM to focus on the proper region of targeted semantics.

67.0

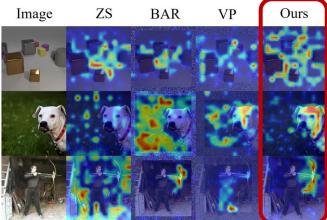
70.6

56.6

65.6

87.1

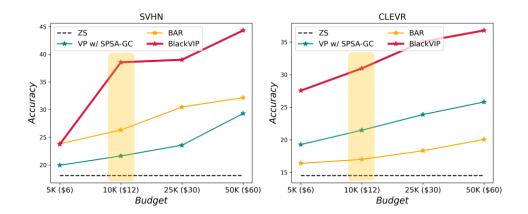
89.7



Practical Usefulness

Empirical Results

- Moreover, BlackVIP shows outstanding **query efficiency**, which is crucial for adaptation in real-world applications.
- And greatly **reduces** the trainable **parameters** and required **pick memory allocation**.



(Costs are based on Clarifai Vision API)

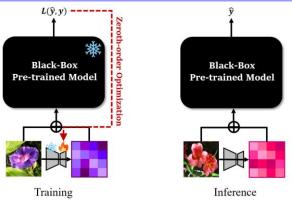
\$12 (USD) with 10k query makes about ×2 performance e.g., (left) 18% to 38%, (right) 14% to 32%

Table 4. Train-time peak memory allocation (Peak Memory) and the number of learnable parameters (Params) on ImageNet.

Method	Peak Me	mory (MB)	Params		
method	ViT-B	ViT-L	ViT-B	ViT-L	
FT (white-box)	21,655	76,635	86M	304M	
LP (white-box)	1,587	3,294	513K	769K	
VP (white-box)	11,937	44,560	69K	69K	
BAR	1,649	3,352	37K	37K	
VP w/ SPSA-GC	1,665	3,369	69K	69K	
BlackVIP	2,428	3,260	9K	9K	

Conclusion

- We pioneered the *black-box visual prompting* for realistic and robust adaptation of pre-trained models.
- For this, we devised **Coordinator**, which reparameterizes the prompt as an autoencoder to handle the input-dependent visual prompt with tiny parameters.
- Besides, we provided the new zeroth-order optimizer **SPSA-GC**, which gives look-ahead corrections to the SPSA's estimated gradient for fast convergence.
- We extensively validated BlackVIP on 16 datasets and demonstrate its effectiveness regarding <u>few-shot adaptability</u>, <u>robustness on</u> <u>distribution/object-location shift</u>, and <u>practical usefulness</u>.



Thank you for watching!

changdae730@gmail.com

@Changdae_Oh

https://arxiv.org/pdf/2303.14773.pdf

https://github.com/changdaeoh/BlackVIP