

GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering

Weiqing Yan^{1,5} Yuanyang Zhang¹ Chenlei Lv² Chang Tang^{3*} Guanghui Yue⁴ Liang Liao⁵ Weisi Lin⁵

ID: THU-AM-321

1 Background

- 2 The Proposed framework
- 3 Experiments

Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering ID: THU-AM-321 2 / 15

Traditional learning-based method:

- Matrix factorization-based. (Wang et al., 2022)
- Multi-view graph clustering. (Nie *et al.*, 2017, Hu *et al.*, 2020, Jing *et al.*, 2021, Lin *et al.*, 2021, Wang *et al.*, 2022)
- Multi-view subspace clustering. (Cao *et al.*, 2015, Kang *et al.*, 2020, Lv *et al.*, 2021, Sun *et al.*, 2021, Liu *et al.*, 2022)

Original features or specified kernel features usually include noises and redundancy. Deep representation learning-based method:

- Multi-level feature learning for contrastive multi-view clustering. (Xu et al., 2022)
- Adversarial attention network for multi-modal clustering. (Zhou *et al.*, 2021)
- Deep incomplete multi-view clustering via contrastive prediction. (Lin et al., 2021)
- Deep safe incomplete multi-view clustering (Tang *et al.*, 2022)

Shortcoming

Based on view-wise fusion models, Ignore a potential prior that is the presence of correlation between samples.

Distinguish the positive pair and negative pair from the sample-level. Be conflict with the clustering objective.

The Proposed framework

Figure: GCFAgg: global and cross-view feature aggregation module, SgCL:structure-guided multiview contrastive learning module.

GCFAgg

Cross-view Fusion

$$\begin{bmatrix} \mathbf{R}_{1:} \\ \mathbf{R}_{2:} \\ \vdots \\ \mathbf{R}_{n:} \end{bmatrix} = \begin{bmatrix} \mathbf{z}_{1}^{1} & \mathbf{z}_{1}^{2} & \cdots & \mathbf{z}_{1}^{V} \\ \mathbf{z}_{2}^{1} & \mathbf{z}_{2}^{2} & \cdots & \mathbf{z}_{2}^{V} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{n}^{1} & \mathbf{z}_{n}^{2} & \cdots & \mathbf{z}_{n}^{V} \end{bmatrix} \begin{bmatrix} \mathbf{W}_{R1:} \\ \mathbf{W}_{R2:} \\ \vdots \\ \mathbf{W}_{RV:} \end{bmatrix}$$
(1)
$$= \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Rk:}; \mathbf{Q}_{1j:} = \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Q_{1}k:}; \mathbf{Q}_{2j:} = \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Q_{1}k}$$

$$\mathbf{R}_{j:} = \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Rk:}; \mathbf{Q}_{1j:} = \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Q_{1}k:}; \mathbf{Q}_{2j:} = \sum_{k=1}^{V} \mathbf{z}_{j}^{k} \mathbf{W}_{Q_{2}k:}$$
(2)

where $\mathbf{z}_i^k \in \mathbb{R}^{1 \times d_v}$ is the feature representation of the *j*-th sample in the *k*-th view. W_{Q_1}, W_{Q_2}, W_R : achieve feature space transformation of cross-view.

Cross-sample Fusion

The structure relationship among samples is denoted as:

$$\mathbf{S} = \operatorname{softmax}\left(\frac{\mathbf{Q}_1 \mathbf{Q}_2^T}{\sqrt{d}}\right). \quad (3)$$

The data representation enhanced by structure relationship is denoted as:

$$\widehat{\mathbf{z}}_{i} = \sum_{j=1}^{n} \mathbf{S}_{ij} \mathbf{R}_{j:} \qquad \widehat{\mathbf{Z}} = [\widehat{\mathbf{z}}_{1}; \widehat{\mathbf{z}}_{2}; \dots; \widehat{\mathbf{z}}_{n}]$$
(4)
where $\mathbf{R}_{j:}$ is the j-thcross-view

fused feature representation.

SgCL:Structure-guided MV CL

Standard CL in the MVC task

The contrastive learning in MVC task is shown as follows:

$$\mathcal{L}_{c} = -\frac{1}{2N} \sum_{i=1}^{N} \sum_{\nu=1}^{V} \sum_{u \neq \nu} \log \frac{e^{C(\mathbf{H}_{i:}^{u}, \mathbf{H}_{i:}^{v})/\tau}}{\sum_{j=1}^{N} \sum_{m=u, \nu} e^{C(\mathbf{H}_{i:}^{u}, \mathbf{H}_{j:}^{m})/\tau} - e^{1/\tau}}$$
(5)

Even if the *i*-th and *j*-th samples are from the same class, they are set as a negative pair.

SgCL

The proposed Structure-guided multiview Contrastive Learning is:

$$\mathcal{L}_{c} = -\frac{1}{2N} \sum_{i=1}^{N} \sum_{\nu=1}^{V} \log \frac{e^{C(\hat{\mathbf{H}}_{i:}, \mathbf{H}_{i:}^{\nu})/\tau}}{\sum_{j=1}^{N} e^{(1-\mathbf{S}_{ij})C(\hat{\mathbf{H}}_{i:}, \mathbf{H}_{j:}^{\nu})/\tau} - e^{1/\tau}}$$
(6)

When the structure relationship S_{ij} between the i-th and j-th sample is low (not from the same

cluster), their corresponding representations are inconsistent.

Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering ID: THU-AM-321 8 / 15

Incomplete MVC

Figure: Improved incomplete MVC (DSIMVC++).

The feature alignment contrastive loss:

The clustering assignment alignment loss:

$$\mathcal{L}_{F++}(f(\mathcal{D}^{c};w)) = \sum_{i=1}^{n_{c}} \sum_{q=1}^{m} \left[-\frac{2}{n_{c}} f_{\widehat{H}}(x_{i};w_{H})^{T} f_{Z}(x_{i}^{q};w) + \frac{1}{n_{c}(n_{c}-1)} \sum_{j\neq i} (1-S_{i,j}) \left(f_{\widehat{H}}(x_{i};w_{H})^{T}, f_{Z}(x_{j}^{q};w) \right)^{2} \right]$$

$$\mathcal{L}_{C++}(f(\mathcal{D}^{c};w)) = -\frac{1}{K} \sum_{q=1}^{m} \sum_{j=1}^{K} \left[\log \frac{e^{\widehat{Q}_{j}^{T} Q_{j}^{q}}}{\sum_{s\neq j} e^{\widehat{Q}_{j}^{T} Q_{s}^{q}}} \right]$$

$$(7)$$

$$(8)$$

Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering ID: THU-AM-321 9 / 15

Experimental Setup

Datasets:

-			
Datasets	Samples	Views	Clusters
Prokaryotic	551	3	4
Synthetic3d	600	3	3
MNIST-USPS	5000	2	10
CCV	6773	3	20
Hdigit	10000	2	10
Cifar10	50000	3	10
Cifar100	50000	3	100
YouTubeFace	101499	5	31
Caltech-5V	1400	5	7
NGs	500	3	5
Cora	2708	2	7
BDGP	2500	2	5
Fashion	10000	3	10

Table: Description of the multiview datasets.

Compared methods:

- PLCMF (IEEE T CYBERNETICS, 2022)
- LMVSC (AAAI, 2020)
- SMVSC (ACM MM, 2021)
- FastMICE (IEEE TKDE, 2022)
- DEMVC (INS, 2021)
- CONAN (IEEE BigData, 2021)
- SiMVC (IEEE CVPR, 2021)
- CoMVC (IEEE CVPR, 2021)
- MFLVC (IEEE CVPR, 2022) Incomplete MVC methods:
- CDIMC (IJCAI, 2020)
- COMPLETER (IEEE CVPR, 2021)
- DIMVC (AAAI, 2022)

DSIMVC (ICML, 2022)

Experimental results

Datasets		CCV		MNIST-USPS		Prokaryotic			Synthetic3d			
Metrics	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR
PLCMF	0.2294	0.1852	0.2557	0.6228	0.6594	0.6670	0.4446	0.0200	0.5681	0.8867	0.6555	0.8867
LMVSC	0.2014	0.1657	0.2396	0.5626	0.5039	0.6060	0.5753	0.1337	0.6294	0.9567	0.8307	0.9567
SMVSC	0.2182	0.1684	0.2439	0.7542	0.6883	0.7542	0.5590	0.1820	0.5717	0.9683	0.8665	0.9683
FastMICE	0.1997	0.1518	0.2341	0.9570	0.9332	0.9573	0.5629	0.2685	0.6500	0.9613	0.8490	0.9613
DEMVC	0.1942	0.2113	0.2169	0.8858	0.9100	0.8880	0.5245	0.3079	0.6969	0.8100	0.6136	0.8100
CONAN	0.1422	0.1016	0.1674	0.5722	0.5708	0.6178	0.4809	0.1589	0.5045	0.9650	0.8540	0.9650
SiMVC	0.1513	0.1252	0.2161	0.9810	0.9620	0.9810	0.5009	0.1945	0.6098	0.9366	0.7747	0.9366
CoMVC	0.2962	0.2865	0.2976	0.9870	0.9760	0.9890	0.4138	0.1883	0.6697	0.9530	0.8184	0.9520
MFLVC	0.3123	0.3162	0.3391	0.9954	0.9869	0.9898	0.4301	0.2216	0.5989	0.9650	0.8537	0.9650
Ours	0.3543	0.3292	0.3812	0.9956	0.9871	0.9956	0.6225	0.3778	0.7314	0.9700	0.8713	0.9700
Datasets		Hdigit		YouTubeFace			Cifar10			Cifar100		
Metrics	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR	ACC	NMI	PUR
PLCMF	0.9047	0.7965	0.9047	0.1473	0.1237	0.2875	0.8144	0.8265	0.8497	0.8260	0.9593	0.8698
LMVSC	0.9709	0.9293	0.9709	0.1479	0.1327	0.2816	0.9896	0.9721	0.9896	0.8482	0.9583	0.9582
SMVSC	0.8634	0.7683	0.8634	0.2587	0.2292	0.3321	0.9899	0.9730	0.9899	0.7429	0.9091	0.7529
FastMICE	0.9332	0.9258	0.9417	0.1825	0.1633	0.3028	0.9694	0.9622	0.9704	0.8257	0.9464	0.8298
DEMVC	0.3738	0.3255	0.4816	0.2487	0.0932	0.2662	0.4354	0.3664	0.4498	0.5048	0.8343	0.5177
CONAN	0.9562	0.9193	0.9562	0.1179	0.1178	0.1499	0.9255	0.8641	0.9255	0.6711	0.9441	0.9983
SiMVC	0.7854	0.6705	0.7854	0.0765	0.0481	0.2662	0.8359	0.7324	0.8359	0.5795	0.9225	0.5869
CoMVC	0.9032	0.8713	0.9032	0.1010	0.0851	0.2674	0.9275	0.8925	0.9275	0.6569	0.9345	0.6570
MFLVC	0.9442	0.8750	0.9440	0.2770	0.2952	0.3297	0.9918	0.9774	0.9918	0.8268	0.9560	0.8268
0								0.0001		0.0507	0.0005	0.000

Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering ID: THU-AM-321 1 /

Results on incomplete datasets

Missing rates		0.1			0.3		0.5			0.7			
Evalu	Evaluation metrics	ACC	NMI	PUR									
BDGP	CDIMC	0.8047	0.7008	0.8037	0.7467	0.6764	0.7527	0.6771	0.5451	0.6771	0.5611	0.3970	0.5776
	COMPLETER	0.4091	0.4180	0.4154	0.3963	0.3319	0.3115	0.3262	0.2747	0.4390	0.4359	0.4510	0.4090
	DIMVC	0.9640	0.8920	0.9120	0.9540	0.8660	0.8890	0.9470	0.8450	0.8730	0.9290	0.8020	0.8310
	DSIMVC	0.9827	0.9443	0.9827	0.9693	0.9034	0.9693	0.9529	0.8611	0.9529	0.9214	0.7937	0.9214
	DSIMVC++ (Our)	0.9836	0.9455	0.9836	0.9698	0.9050	0.9698	0.9557	0.8685	0.9557	0.9332	0.8142	0.9332
p	CDIMC	0.5965	0.3564	0.6000	0.5124	0.2239	0.5340	0.5330	0.2373	0.5663	0.4136	0.1387	0.4394
Ę.	COMPLETER	-	-	-	-		-	-	-	-	-		-
thet	DIMVC	0.8183	0.6701	0.8380	0.8233	0.5860	0.8241	0.7968	0.5355	0.7971	0.6689	0.3974	0.6774
ynt	DSIMVC	0.7613	0.6744	0.8943	0.7378	0.6365	0.8773	0.7247	0.6090	0.8643	0.7043	0.5499	0.8242
S	DSIMVC++ (Our)	0.7785	0.6933	0.9005	0.7530	0.6693	0.9042	0.7612	0.6463	0.8952	0.7197	0.5900	0.8638
	CDIMC	0.2460	0.0111	0.3066	0.2222	0.0066	0.3024	0.2400	0.0052	0.3022	0.2518	0.0054	0.3025
e	COMPLETER	0.2441	0.4300	0.3172	0.2542	0.4130	0.3242	0.2464	0.4070	0.3199	0.2540	0.1850	0.3055
Lo Lo	DIMVC	0.4384	0.2231	0.5079	0.3704	0.1470	0.4082	0.3561	0.1432	0.4275	0.2789	0.0718	0.3397
0	DSIMVC	0.4402	0.3316	0.5445	0.4106	0.2924	0.5099	0.3764	0.2360	0.4742	0.3243	0.1628	0.4228
	DSIMVC++ (Our)	0.4699	0.3271	0.5588	0.4484	0.3035	0.5544	0.4338	0.2720	0.5290	0.3554	0.1935	0.4620
	CDIMC	0.3072	0.0794	0.3216	0.2736	0.0478	0.2832	0.2532	0.0346	0.2620	0.2464	0.0270	0.2504
6	COMPLETER	-	-	-	-	-	-	-	-	-	-	-	-
NG	DIMVC	0.3543	0.1493	0.3562	0.2120	0.0363	0.2138	0.2213	0.0588	0.2280	0.2598	0.0546	0.2645
_	DSIMVC	0.5564	0.4599	0.6230	0.5178	0.3864	0.5854	0.4672	0.2980	0.5244	0.4090	0.2095	0.4746
	DSIMVC++ (Our)	0.6358	0.5186	0.7090	0.6136	0.4428	0.6734	0.4598	0.2801	0.5310	0.4410	0.2298	0.5054
и	CDIMC	0.6500	0.6642	0.6696	0.5064	0.5121	0.5241	0.4484	0.4483	0.4553	0.3693	0.3668	0.3818
	COMPLETER	-	-	-	-	-	-	-	-	-	-	-	-
shi	DIMVC	0.7811	0.8578	0.8286	0.7132	0.7676	0.7614	0.7044	0.7447	0.7508	0.6128	0.6806	0.6693
Fa	DSIMVC	0.8798	0.8623	0.8800	0.8680	0.8379	0.8687	0.8333	0.8025	0.8337	0.7825	0.7626	0.7825
	DSIMVC++ (Our)	0.9360	0.8953	0.9360	0.9160	0.8657	0.9160	0.8969	0.8366	0.8969	0.8637	0.8015	0.8644

Weiqing Yan, Yuanyang Zhang, Chenlei Lv, Chang Tang GCFAgg: Global and Cross-view Feature Aggregation for Multi-view Clustering ID: THU-AM-321 12 / 15

Table: Ablation study.

Table: The ablation study for the SgCL.

Datasets	Method	ACC	NMI	PUR	
Prokaryotic	No-GCFAgg	0.4403	0.1906	0.5740	
	No-SgCL	0.4804	0.2226	0.6534	
	GCFAggMVC	0.6225	0.3778	0.7314	
CCV	No-GCFAgg	0.2850	0.2740	0.3150	
	No-SgCL	0.2020	0.1900	0.2560	
	GCFAggMVC	0.3543	0.3292	0.3812	
MNIST-USPS	No-GCFAgg	0.9753	0.9500	0.9753	
	No-SgCL	0.6949	0.6656	0.7410	
	GCFAggMVC	0.9956	0.9871	0.9956	

Datasets	Method	ACC	NMI	PUR	
	Standard CL	0.2711	0.2669	0.3046	
CCV	Standard CL with S	0.3046	0.3017	0.3363	
	SgCL without S	0.2858	0.2833	0.3260	
	SgCL	0.3543	0.3292	0.3812	
	Standard CL	0.9562	0.9386	0.9562	
MNIST-	Standard CL with S	0.9768	0.9527	0.9768	
USPS	USPS SgCL without S		0.9327	0.9698	
	SgCL	0.9956	0.9871	0.9956	

Model analysis

Figure: The convergence analysis and parameter analysis on MNIST-USPS, Synthetic3d.

(a) Z features (b) H features (c) \hat{H} features Figure: The visualization results of different feature representations on different layers after convergence. Note that, H feature denotes the concatenation of all learnt H^{ν} .

- Propose a cross-sample and cross-view feature aggregation module (GCFAgg), which makes the representations of samples with highly structure relationship be more similar.
- Design a Structure-guided Contrastive Learning module, which addresses the conflict of negative pairs with the clustering objective.
- The proposed modules are suitable to the complete MVC task and incomplete MVC tasks.

ArXiv: https://arxiv.org/pdf/2305.06799v1.pdf Code: https://github.com/Galaxy922/GCFAggMVC