

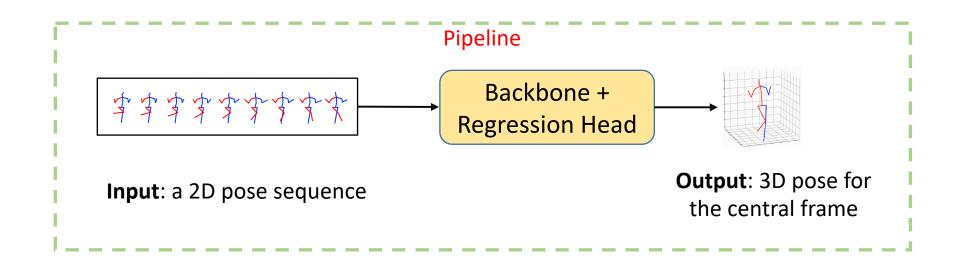
PoseFormerV2: Exploring Frequency Domain for Efficient and Robust 3D Human Pose Estimation

Poster: WED-AM-062

Qitao Zhao¹, Ce Zheng², Mengyuan Liu³, Pichao Wang⁴, Chen Chen²

¹Shandong University,
²Center for Research in Computer Vision, University of Central Florida,
³Key Laboratory of Machine Perception, Peking University, Shenzhen Graduate School,
⁴Amazon Prime Video

Introduction



Estimating the 3D human pose from a 2D pose sequence is now dominant in the literature (referred to as 2D-to-3D lifting methods).

Research Problems

State-of-the-art methods suffer from two limitations:

• **Poor efficiency** in temporal modeling for long joint sequences

Applying dense temporal modeling (e.g., using self-attention) for all video frames is computationally expensive

• Vulnerable to the noise brought by imperfect 2D joint detection

Frame-to-frame interactions unexpectedly propagate and amplify the noise in each video frame

Take-away Message:

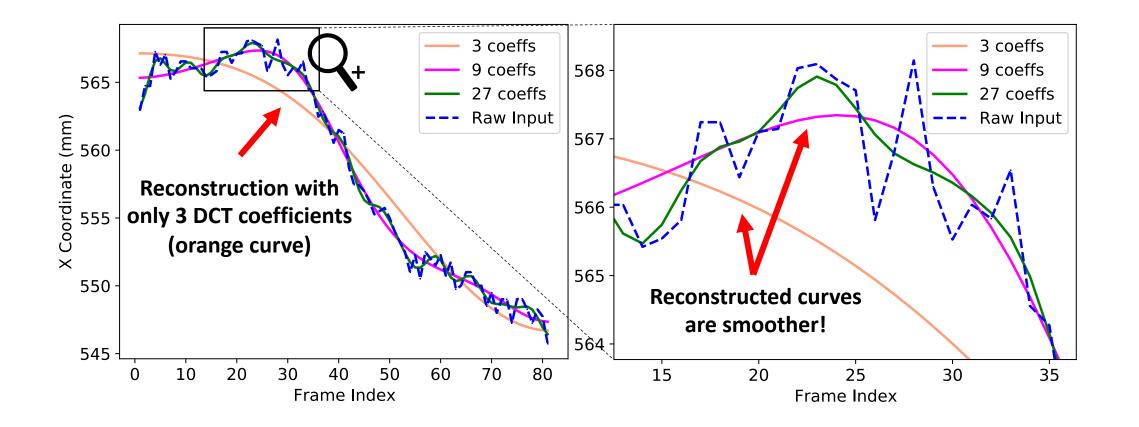
We find the **frequency-domain representation** of input

sequences a surprising fit to **simultaneously** solve these two

practical problems.

Motivation

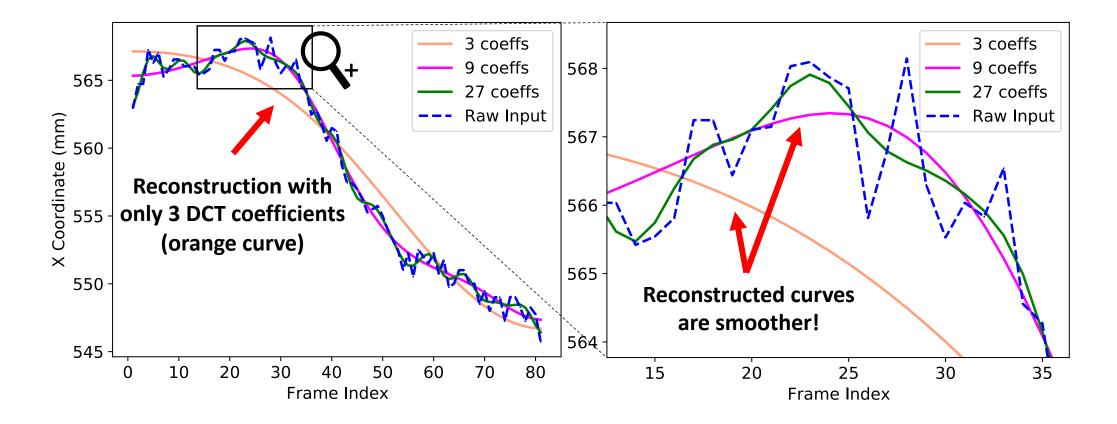
We show a sample of joint trajectory and its reconstructions with a few low-frequency Discrete Cosine Transform (DCT) coefficients.



Motivation

Low-frequency coefficients

are enough to encode global human dynamics filter out noise in the joint trajectory ("smoother")

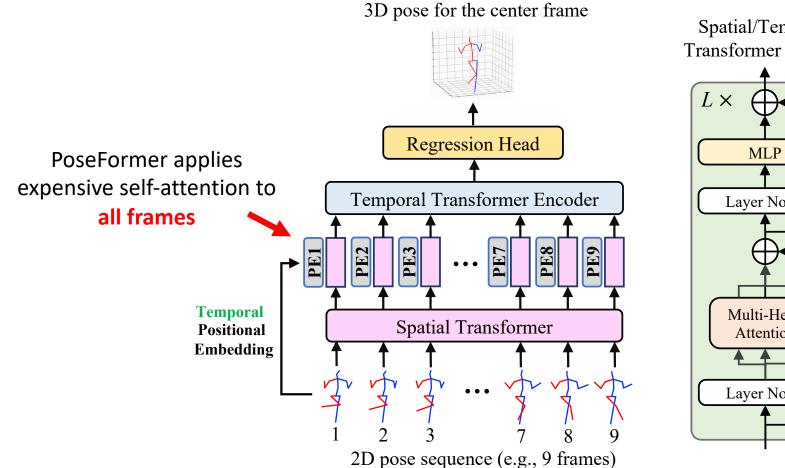


The Proposed Method

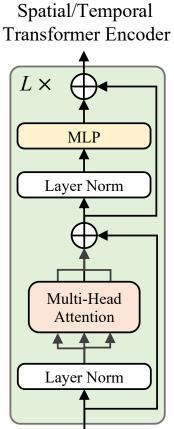
We build our method on PoseFormer(V1).

PoseFormer

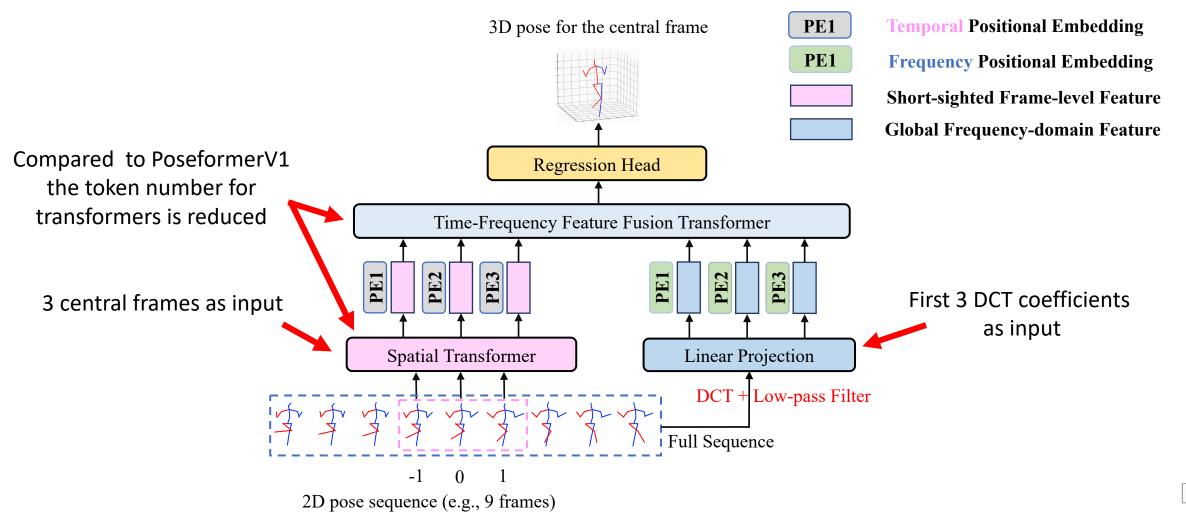
Here is an overview:



Zheng et al. 3d human pose estimation with spatial and temporal transformers. In ICCV, 2021.



The Proposed Method



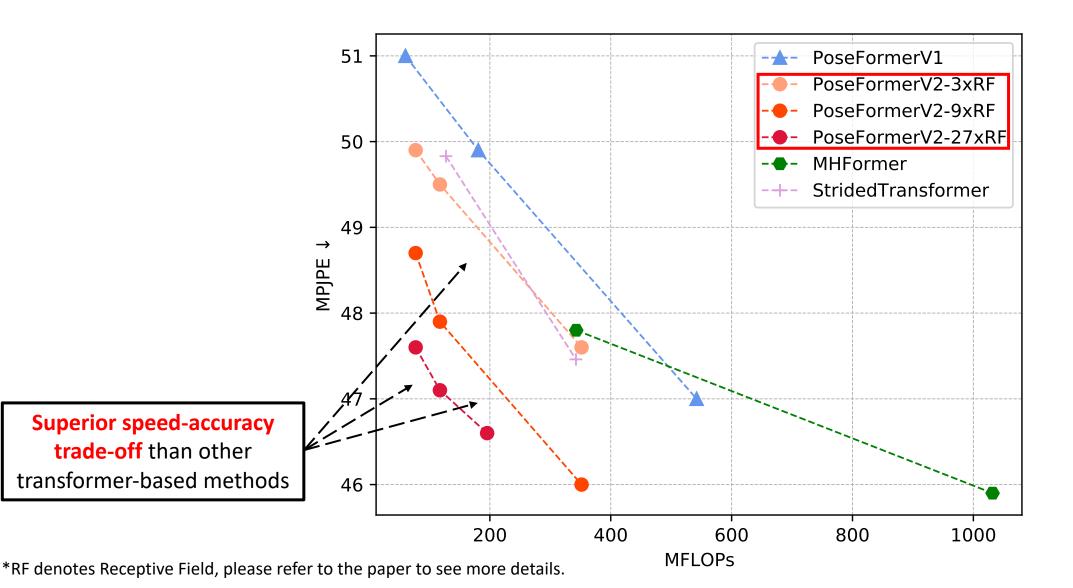
Zheng et al. 3d human pose estimation with spatial and temporal transformers. In ICCV, 2021.

Properties

- Given a long sequence, we only use a few central frames and its lowfrequency coefficients, thus **reducing the effective sequence length**.
- The frame number and coefficient number can be arbitrarily specified for a flexible speed-accuracy trade-off.
- Low-frequency DCT coefficients filter out noise in the input 2D pose sequence and therefore **improve robustness**.

Comparisons with State-of-the-art Methods

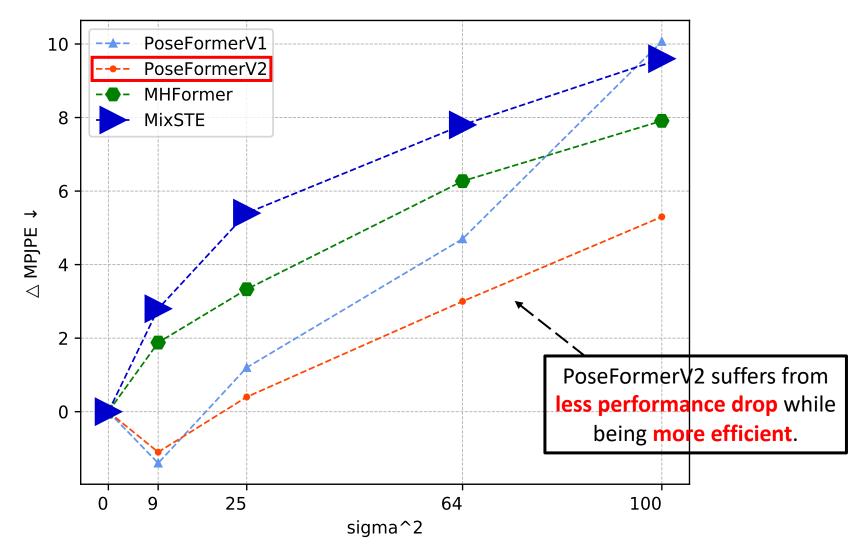
Comparisons on Human3.6M



Comparisons on Human3.6M

We investigate the **robustness** of models by adding Gaussian noise to the ground-truth 2D joint detection of standard deviation *sigma*, and to show their **performance drop** as *sigma* increases.

Comparisons on Human3.6M



*the size of markers denotes computational cost

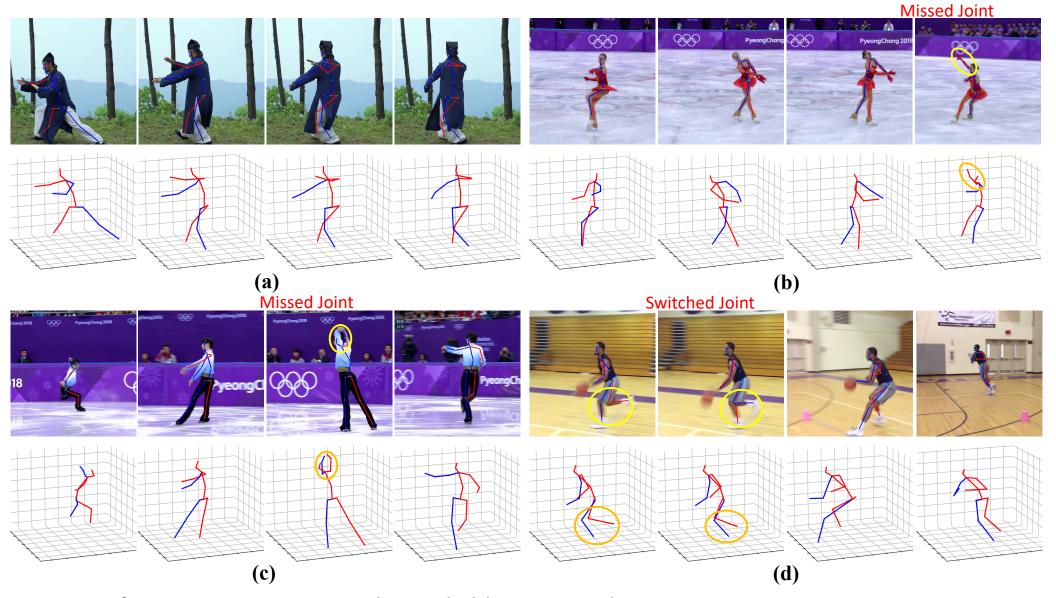
Comparisons on MPI-INF-3DHP

Method		PCK ↑	AUC ↑	$MPJPE \downarrow$
Mehta <i>et al</i> . [23]	3DV'17	75.7	39.3	117.6
Mehta <i>et al</i> . [24]	ACM ToG'17	76.6	40.4	124.7
Pavllo <i>et al</i> . [29] (<i>T</i> =81)	CVPR'19	86.0	51.9	84.0
Pavllo <i>et al</i> . [29] (<i>T</i> =243)	CVPR'19	85.5	51.5	84.8
Lin <i>et al</i> . [17] (<i>T</i> =25)	BMVC'19	83.6	51.4	79.8
Li <i>et al</i> . [14]	CVPR'20	81.2	46.1	99.7
Chen <i>et al</i> . [5] (<i>T</i> =81)	TCSVT'21	87.9	54.0	78.8
PoseFormerV1 [45] (T=9)(†)	ICCV'21	95.4	63.2	57.7
MHFormer [16] (<i>T</i> =9)	CVPR'22	93.8	63.3	58.0
MixSTE [43] (T=27)	CVPR'22	94.4	66.5	54.9
P-STMO [32] (T=81)(*)	ECCV'22	97.9	75.8	32.2
PoseFormerV2 $(T=81)$		97.9	78.8	27.8

PoseFormerV2 achieves the state-of-the-art performance on MPI-INF-3DHP

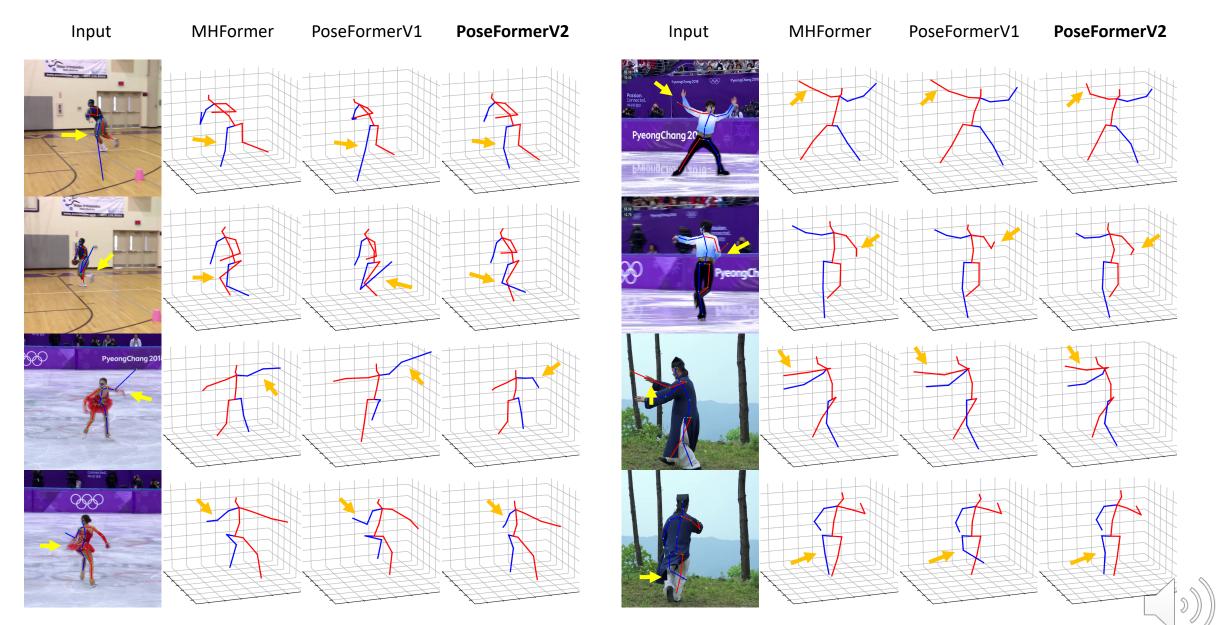
Qualitative Results

Challenging in-the-wild images



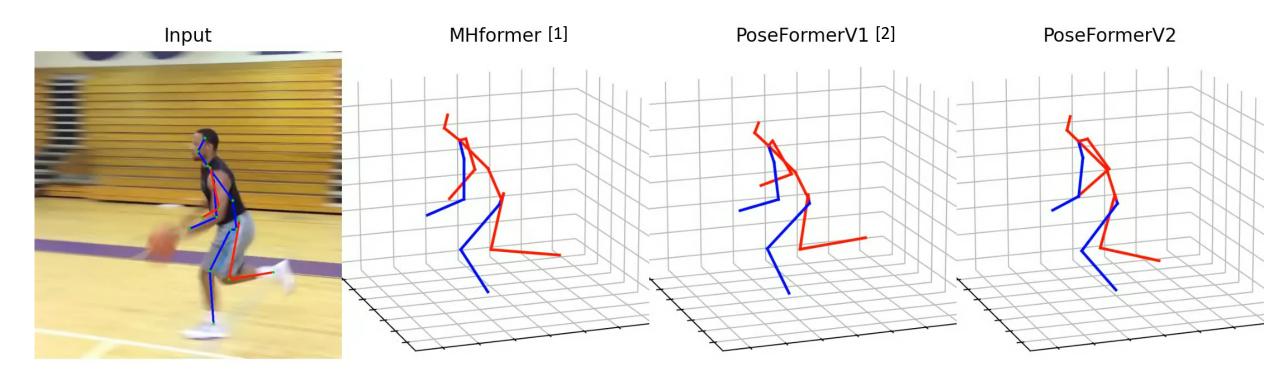
PoseFormerV2 infers correct 3D pose with unreliable 2D joint detection

We add Gaussian noise to a randomly-selected 2D joint to compare the robustness of models



PoseFormerV2 obtains reliable 3D pose with even highly deviated 2D joint detection

We add Gaussian noise to all 2D joints and PoseFormerV2 shows a surprisingly good temporal consistency.



[1] Li et al. MHFormer: Multi-hypothesis transformer for 3d human pose estimation. In CVPR, 2022.

[2] Zheng et al. 3d human pose estimation with spatial and temporal transformers. In ICCV, 2021.

Thanks for Watching!

- Project Page
- (code & video):
- qitaozhao.github.io/PoseFormerV2

