Q: How to Specialize Large Vision-Language Models to Data-Scarce VQA Tasks? A: Self-Train on Unlabeled Images!

Zaid Khan¹, Vijay Kumar BG², Samuel Schulter², Xiang Yu³, Yun Fu¹, Manmohan Chandraker^{2,4} ¹Northeastern University, ²NEC Laboratories America, ³Amazon, ⁴UC San Diego

WED-PM-253

NEC Laboratories America

Key Ideas

- •Apply self-training to visual question answering.
- generation task.

Results

- Increased performance on data scarce VQA tasks.
- Improved domain generalization.
- Reduced catastrophic forgetting of numerical reasoning.

When facing data scarcity, can large visionlanguage exploit unlabeled images to self-improve?

Treat visual question generation as a direct image-conditional text-

•Resistance to adversarial questions, reduced shortcut learning, and increased consistency of answers.

What happens when you want to apply your visionlanguage model to a specific task?

Task-specific Post-Training (VQAv2+VG, 2M pairs)

Finetuning (A-OKVQA, ~10k pairs)

Finetuning on small datasets is problematic.

Who is wearing glasses? woman man

Is the umbrella upside down?

Source: VQAv2

Where is the child sitting? fridge arms

How many children are in the bed?

- Question types can be very different.
- Images are often from a different domain.
- •Heavily overparameterized model on very small dataset (200m+ vs <10k datapoint).
- •Not enough data to learn the task well.
- Catastrophic forgetting of already learned skills (e.g. numerical reasoning).

- **Q**: What are these GMS-stained organisms?
- A1: Blastomyces dermatitidis.
- A2: Cryptococcus neoformans.
- A3: Pneumocystis jiroveci.
- A4: trophozoites of *Entamoeba histolytica*.
- A5: yeasts of Candida species.

Q: What was the name of the first cloned type of this animal? A: Dolly

Can we take advantage of unlabeled images?

- Acquiring more annotations for complex tasks is expensive and time consuming.
- But unlabeled images are cheap and plentiful.

Self-training looks promising...

- Train on self-predictions on unlabeled images.
- Shown to be successful in object detection and image classification.

asks is expensive and time consuming. iful.

ges. n and image classification.

How can we apply self-training in VQA?

- teacher and student have different tasks in VQA self-training.
- question generation require dense annotations to generate questions. • Existing paradigms can't work with unlabeled images!

• Challenge 1: Task of student and teacher is **identical** in standard self-training, but

Challenge 2: Our pseudo labels are visual questions, but approaches for visual

SelTDA: Self-Taught Data Augmentation

Selling Points

- Modular (no specialized architectures needed).
- Straightforward treatment of pseudolabeling as text generation.
- Offline and decoupled from training.

Images		Questions						
Labeled	Unlabeled	Real	Synthetic	Total	Multiplier	Accuracy	% Gain	Questions/Image
17,000	0	$17,\!000$	0	$17,\!000$	1x (baseline)	57.11		N/A
17,000	0	$17,\!000$	$17,\!000$	$34,\!000$	$2\mathbf{x}$	57.85	+0.74	1 / 1
17,000	0	$17,\!000$	$34,\!000$	$51,\!000$	$3\mathrm{x}$	60.01	+2.90	2 / 1
17,000	0	$17,\!000$	$51,\!000$	$68,\!000$	$4\mathbf{x}$	59.73	+2.62	3 / 1
17,000	0	$17,\!000$	0	17k	1x (baseline)	57.11		N/A
$17,\!000$	8,500	$17,\!000$	$17,\!000$	$34,\!000$	$2\mathrm{x}$	60.69	+3.57	2 / 1
17,000	$17,\!000$	$17,\!000$	$34,\!000$	$51,\!000$	$3\mathrm{x}$	62.09	+4.98	2 / 1
17,000	$25,\!500$	$17,\!000$	$51,\!000$	68,000	4x	61.31	+4.20	2 / 1

Self-Taught Data Augmentation Improves Performance

- On a data-scarce task (A-OKVQA).
- Can work even without extra images, just by generating more questions.
- •Not overly sensitive to hyperparameters.
- There's a saturation point.

	# of Real + Synthetic QA Pairs		Robustness Test Sets					
	Real	Synthetic	Multiplier	AdVQA	VQA-CE	VQA-Rephrasings	Avg. % Increase	Robustness Total
(a)	$17,\!000$	0	$\times 1$	31.06	51.43	65.88	0	148.37
(b)	$17,\!000$	$2,\!000$	$\times 1.1$	37.09	52.96	67.94	+3.21	157.99
(c)	$17,\!000$	4,500	$\times 1.3$	36.99	53.15	67.98	+3.25	158.12
(d)	$17,\!000$	$8,\!000$	$\times 1.5$	37.34	53.33	67.57	+3.29	158.24
(e)	$17,\!000$	$12,\!000$	imes 1.7	37.43	52.62	67.35	+3.01	157.4
(f)	$17,\!000$	$17,\!000$	imes 2	36.95	52.05	66.95	+2.53	155.95
(g)	$17,\!000$	$34,\!000$	imes 3	36.89	51.00	65.64	+1.72	153.53
(h)	17,000	$51,\!000$	$\times 4$	36.06	50.25	64.78	+0.91	151.09
	Max $\%$	increase on	each dataset	+6.03	+1.9	+2.1		+9.87

Self-Taught Data Augmentation Improves Robustness

- Adversarial Questions (AdVQA)
- Multimodal Shortcut Learning (VQA Counterexamples)
- Self-Consistency (VQA Rephrasings)

	Target (0-shot)			
Model	ArtVQA	PathVQA	RSVQA	
Baseline (BLIP) BLIP + $SelTDA$	$31.65 \\ 38.03$	$25.09 \\ 26.76$	$37.78 \\ 38.99$	
% gain w.r.t baseline	+6.38	+1.67	+1.1	

Self-Taught Data Augmentation Improves Domain Generalization

- ArtVQA (fine art images)
- PathVQA (medical images)
- •RSVQA (remote sensing images)
- •Note: only in-domain images were used!

	# Training Pairs		Numerical Reasoning		
Initialization	Real	Synth	VQAv2	VQA-Rephrasings	
$\overline{\mathrm{BLIP}_{VQAv2}}$	17000	0	13.49	13.06	
BLIP_{VQAv2}	17000	2000	38.73	33.74	
BLIP_{VQAv2}	17000	4500	40.4	35.91	
BLIP_{VQAv2}	17000	8000	42.9	36.5	
BLIP_{VQAv2}	17000	12000	43.3	37.77	
$\max \%$ gat	in w.r.t l	oaseline	+29.81	+24.71	
BLIP	17000	0	1.42	1.29	
BLIP	17000	17000	4.53	11.44	
BLIP	17000	34000	5.05	11.77	
BLIP	17000	51000	4.26	11.86	
$\max \%$ gat	in w.r.t l	oaseline	+3.63	+10.57	

Mitigation of Catastrophic Forgetting

- •Finetuning on small tasks really hurts numerical reasoning ability.
- •Using self-taught data augmentation helps to retain it.
- Can even induce numerical reasoning ability when original model did not have it.

How good are the generated questions?

Question Type	Well-Posed Question	Answers Correct	Answerable	\mid % of Total (95% CI)
External Knowledge	73%	62%	70%	29.6% - 50.00%
Visual Identification	94%	88%	94%	11.18% - $27.65~%$
Visual Reasoning	83%	70%	80%	32.54% - $53.17%$
Overall $(95\% \text{ CI})$	71.16% - $87.96%$	59.77% - 78.98%	68.83% - 86.22%	

- Human evaluation (~100 questions).
- Question quality stratified by type of questions. • Model has competencies.

• Plenty of noise, but not too far away from annotator agreement (~80%) on real datasets.

How good are the generated questions?

All Shown (T-SNE)

All Shown (T-SNE)

• Generated questions (orange) are diverse, covering: real task/domain-specific areas (green) • generic post-training areas (blue).

ArtVQA (Pseudo) Hidden

ArtVQA (real) Hidden

PathVQA (Pseudo) Hidden

PathVQA (real) Hidden

Why does it work?

- Pseudolabels can act as regularization
- Distillation of dark knowledge from pretraining
 - Subtle difference in conditioning
- VQA P(A | I, Q) vs P(T | I) Pretraining

model has lot more experience with one

Where do we go from here?

- Language capacity in VLMS has been increasing over time.
 - Makes self-improvement more promising.
 - More pre-existing knowledge about the world to draw on.
- Can we start correcting specific errors with self-training?
 - Your answer is wrong, think about the problem 'till you get it right.