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Point cloud mapping in large-scale environment is challenging
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Image from: https://geo-matching.com/content/oxts-what-is-lidar           
                                https://metrology.news/3d-point-cloud-software-for-industrial-facilities-scanning/



Point cloud mapping in large-scale environment is challenging
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Large-scale LiDAR mapping result on KITTI sequences

Image from: https://geo-matching.com/content/oxts-what-is-lidar           
                                https://metrology.news/3d-point-cloud-software-for-industrial-facilities-scanning/



Learning-based mapping: two types of approaches
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Train-then-test Train-as-optimization

● DeepMapping

○ Apply neural network as mapping optimizer

○ Regression via binary classification

● Most learning-based LiDAR SLAM methods face 

generalization issues

OverlapNet - Loop Closing for LiDAR-based SLAM by Chen et al.  (24 May 2021)
DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds. by Ding 
et al. (9 April 2019)

DeepLO: Geometry-Aware Deep LiDAROdometry by Cho et al.  (15 September 2020)

OverlapNet

RPM



Original DeepMapping pipeline

Global Pose estimation Global Refinement using 
global occupancy consistency
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:  Chamfer Distance : Classification loss



Issues of DeepMapping
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(i1) No-explicit-loop-closure (i2) No-local-registration (i3) Slow-convergence-in-global-
registration

• Lack of loop closing

• Facing drifting problem

• Lack of exact point correspondence

• sparse sensor resolution/long-range 
sensing.

• Lack enough inference cues

• Slow convergence on large datasets.

Image from: https://www.youtube.com/watch?v=MNw-GeHHSuA/



Issues of DeepMapping

7

DeepMapping produces unsatisfying mapping results on large-scale environment
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DeepMapping2 Pipeline
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DeepMapping2 Pipeline - Preprocess



DeepMapping2 Pipeline - Preprocess
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Batch Organization  

(a) Temporal batch organization (b)   Random batch organization (c) Spatial topology batch organization
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• Batch organization is based on map topology
• Batch organization by spatial topology (via place recognition) is the best

(i1) No-explicit-loop-closure



12

DeepMapping2 Pipeline - Preprocess



DeepMapping2 Pipeline - Preprocess
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DeepMapping2 Pipeline
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Local-to-global point consistency loss 

(a) Poor global registration (b) Perfect global registration
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For each point in an anchor frame,  we compute consistency between different versions of its global coordinate.

(i2) No-local-
registration

(i3) Slow-convergence-in-
global-registration



Training animation on KITTI dataset
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KITTI (0018) KITTI (0027)

Frame indexFrame index



Training animation on NCLT and Nebula dataset
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NCLT Nebula
Frame indexFrame index



Quantitative results
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Table 1. Quantitative result on the KITTI dataset. Table 2. Quantitative result on the NCLT dataset.

Method Drive_0018 Drive_0027
T-ATE(m) R-ATE(º) T-ATE(m) R-ATE(º)

Incremental ICP 4.38 4.61 3.53 2.67

Multiway 2.24 1.75 4.70 5.93

DGR 3.15 4.09 4.12 1.59

Lego-LOAM 1.90 1.36 2.96 2.36

HRegNet 30.61 94.90 45.49 85.36

GeoTransformer 4.03 3.02 10.15 15.34

ICP+DM 3.42 1.66 3.39 2.70

KISSICP 2.10 0.68 6.25 1.21

ICP+DM2 1.81 0.72 2.29 1.57

KISS-ICP+DM2 1.78 0.68 2.30 1.17

Lego-LOAM+DM2 1.63 1.18 2.59 2.27

Method T-ATE(m) R-ATE( )

Incremental ICP 6.20 12.95

Multiway 6.56 12.60

DGR 8.89 42.90

Lego-LOAM 2.25 2.18

ICP+DM2 3.73 6.27

Lego-LOAM+DM2 2.02 1.87



Ablation study on the KITTI dataset
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Table 3. Ablation study on the KITTI dataset.

Components

T-ATE(m) R-ATE(º)

DM Loss Batch 
Organization

Consistency 
Loss

✓ 1.88 4.72
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Components

T-ATE(m) R-ATE(º)

DM Loss Batch 
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Ablation study on the KITTI dataset
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Table 3. Ablation study on the KITTI dataset.
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Ablation study on the KITTI dataset
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Ablation study on the KITTI dataset



Conclusion

• DM2 achieves SOTA mapping performance in large-scale scenes

• Batch organization by spatial topology achieves loop closing implicitly

• Consistency loss speeds up the convergence

• DM2 is a general point cloud map optimization back-end
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