

DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization

Li Ding,

Chen Feng

AI4CE Lab **New York University**

Point cloud mapping in large-scale environment is challenging

Point cloud mapping in large-scale environment is challenging

Large-scale LiDAR mapping result on KITTI sequences

Image from: https://geo-matching.com/content/oxts-what-is-lidar https://metrology.news/3d-point-cloud-software-for-industrial-facilities-scanning/

Learning-based mapping: two types of approaches

Train-then-test

 Most learning-based LiDAR SLAM methods face generalization issues

OverlapNet

RPM

DeepLO: Geometry-Aware Deep LiDAROdometry by Cho et al. (15 September 2020) OverlapNet - Loop Closing for LiDAR-based SLAM by Chen et al. (24 May 2021)

Train-as-optimization

- DeepMapping
 - Apply neural network as mapping optimizer
 - Regression via binary classification

DeepMapping: Unsupervised Map Estimation From Multiple Point Clouds. by Ding et al. (9 April 2019)

Original DeepMapping pipeline

Issues of DeepMapping

(i1) No-explicit-loop-closure

- Lack of loop closing
- Facing drifting problem

(i2) No-local-registration

- Lack of exact point correspondence
- sparse sensor resolution/long-range sensing.

(i3) Slow-convergence-in-globalregistration

- Lack enough inference cues
- Slow convergence on large datasets.

Image from: https://www.youtube.com/watch?v=MNw-GeHHSuA/

Issues of DeepMapping

DeepMapping produces unsatisfying mapping results on large-scale environment

DeepMapping2 Pipeline

DeepMapping2 Pipeline - Preprocess

Point cloud input

DeepMapping2 Pipeline - Preprocess

DM loss

Batch Organization

(i1) No-explicit-loop-closure

- Batch organization is based on map topology
- Batch organization by spatial topology (via place recognition) is the best

(a) Temporal batch organization (b) Random batch organization

DeepMapping2 Pipeline - Preprocess

DeepMapping2 Pipeline - Preprocess

DeepMapping2 Pipeline

Local-to-global point consistency loss

A I 9 (E

(i2) No-localregistration (i3) Slow-convergence-inglobal-registration

For each point in an anchor frame, we compute consistency between different versions of its global coordinate.

Training animation on KITTI dataset

Training animation on NCLT and Nebula dataset

Quantitative results

Table 1. Quantitative result on the KITTI dataset.

Mothod	Drive_0018		Drive_0027	
Method	T-ATE(m)	R-ATE(°)	T-ATE(m)	R-ATE(°)
Incremental ICP	4.38	4.61	3.53	2.67
Multiway	2.24	1.75	4.70	5.93
DGR	3.15	4.09	4.12	1.59
Lego-LOAM	1.90	1.36	2.96	2.36
HRegNet	30.61	94.90	45.49	85.36
GeoTransformer	4.03	3.02	10.15	15.34
ICP+DM	3.42	1.66	3.39	2.70
KISSICP	2.10	0.68	6.25	1.21
ICP+DM2	1.81	0.72	<mark>2.29</mark>	1.57
KISS-ICP+DM2	1.78	<mark>0.68</mark>	2.30	<mark>1.17</mark>
Lego-LOAM+DM2	<mark>1.63</mark>	1.18	2.59	2.27

Table 2. Quantitative result on the NCLT dataset.

Method	T-ATE(m)	R-ATE([•])
Incremental ICP	6.20	12.95
Multiway	6.56	12.60
DGR	8.89	42.90
Lego-LOAM	2.25	2.18
ICP+DM2	3.73	6.27
Lego-LOAM+DM2	<mark>2.02</mark>	<mark>1.87</mark>

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72
\checkmark	\checkmark		1.65	2.07

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72
\checkmark	\checkmark		1.65	2.07
\checkmark		\checkmark	1.88	4.70

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72
\checkmark	\checkmark		1.65	2.07
\checkmark		\checkmark	1.88	4.70
	\checkmark	\checkmark	Failed	Failed

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72
\checkmark	\checkmark		1.65	2.07
\checkmark		\checkmark	1.88	4.70
	\checkmark	\checkmark	Failed	Failed
\checkmark	\checkmark	\checkmark	1.63	1.81

Components				
DM Loss	Batch Organization	Consistency Loss	T-ATE(m)	R-ATE(°)
\checkmark			1.88	4.72
\checkmark	\checkmark		1.65	2.07
\checkmark		\checkmark	1.88	4.70
	\checkmark	\checkmark	Failed	Failed
\checkmark	\checkmark	\checkmark	<mark>1.63</mark>	<mark>1.81</mark>

Xinhao Liu (刘歆昊) **Incoming Ph.D. student** New York University E-mail: xinhao.liu@nyu.edu Webpage: https://gaaaavin.github.io

Conclusion

- DM2 achieves SOTA mapping performance in large-scale scenes
- Batch organization by spatial topology achieves loop closing implicitly
- Consistency loss speeds up the convergence
- DM2 is a general point cloud map optimization back-end

Chao Chen (陈超) Ph.D. candidate New York University E-mail: <u>cchen@nyu.edu</u> Webpage: https://joechencc.github.io

