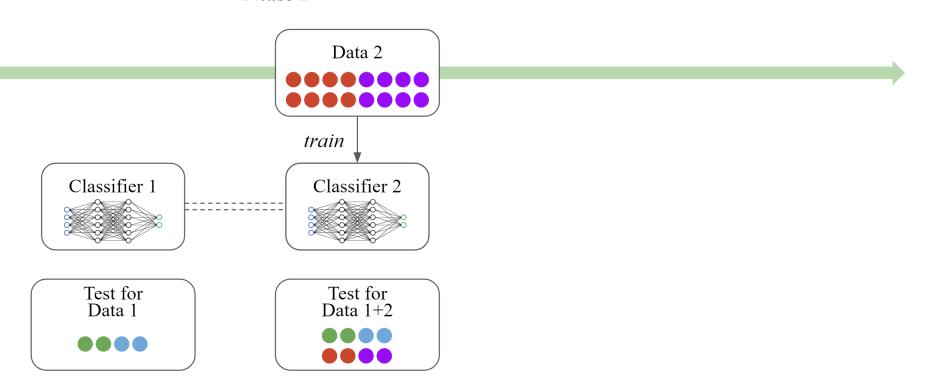


Class-Incremental Exemplar Compression for Class-Incremental Learning

Zilin Luo¹, Yaoyao Liu², Bernt Schiele², Qianru Sun¹

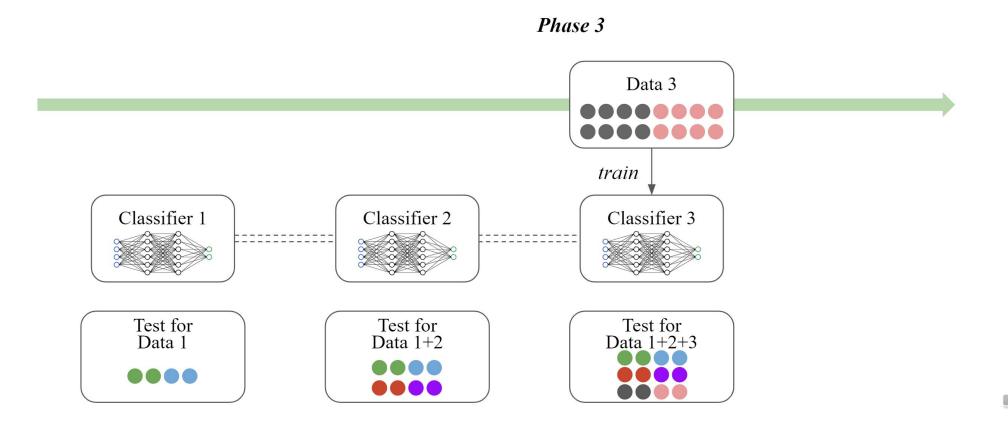
¹Singapore Management University ²Max Planck Institute for Informatics

WED-AM-299

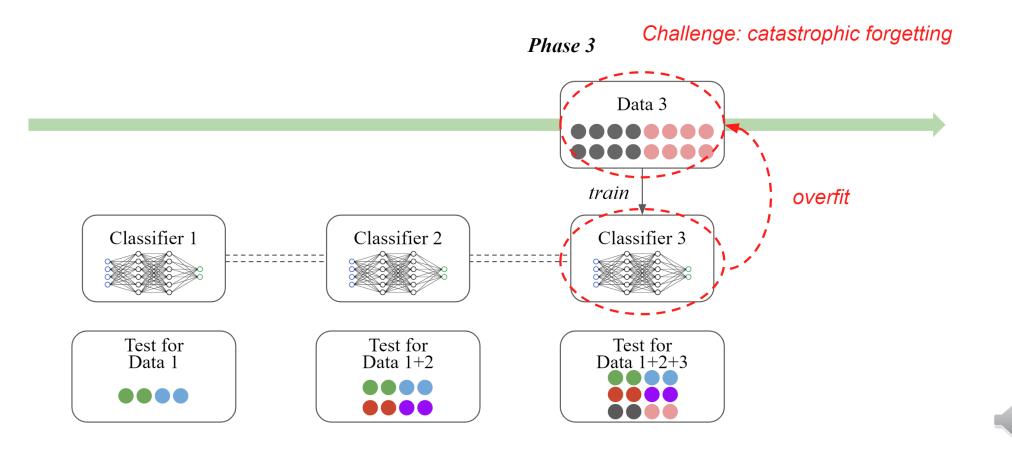


0.00

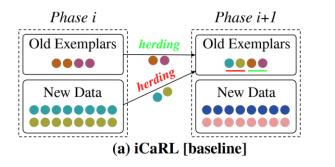
Phase 2



10



007



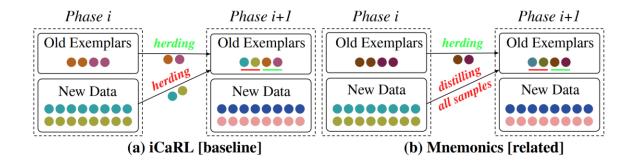
(a) iCaRL [related]

- maintains a memory with limited capacity
- selects exemplars using herding technique

Original		
Images in (a)		

Reference

- [1] Rebuffi, Sylvestre-Alvise, et al. "iCaRL: Incremental classifier and representation learning." In CVPR 2017.
- [2] Liu, Yaoyao, et al. "Mnemonics Training: Multi-Class Incremental Learning without Forgetting." In CVPR 2020.
- [3] Wang, Liyuan, et al. "Memory Replay with Data Compression for Continual Learning." In ICLR 2022.



(b) Mnemonics [related]

- distills exemplars as optimizable parameters
- one exemplar carries more information
- number of saved exemplars is not changed

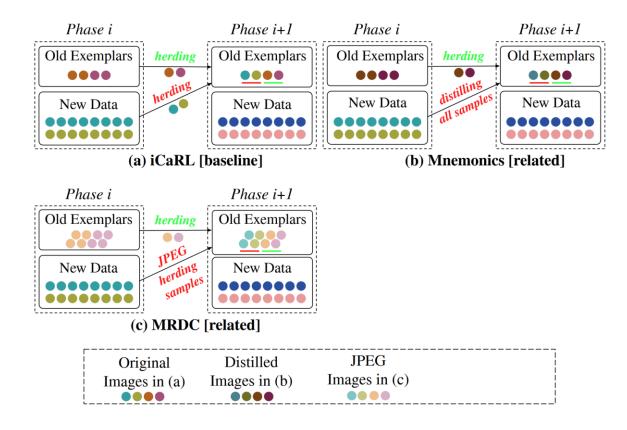
Original	Distilled	1
Images in (a)	Images in (b)	1
i		⁻

Reference

[1] Rebuffi, Sylvestre-Alvise, et al. "iCaRL: Incremental classifier and representation learning." In CVPR 2017.

[2] Liu, Yaoyao, et al. "Mnemonics Training: Multi-Class Incremental Learning without Forgetting." In CVPR 2020.

[3] Wang, Liyuan, et al. "Memory Replay with Data Compression for Continual Learning." In ICLR 2022.



(c) MRDC [related]

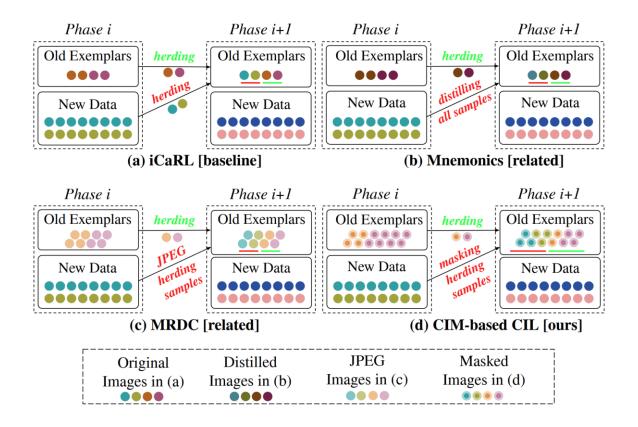
- compresses exemplars with JPEG algorithm
- discriminativeness of each exemplar is weaken
- number of saved exemplars is increased
- aims to trade-off between quality and quantity

Reference

[1] Rebuffi, Sylvestre-Alvise, et al. "iCaRL: Incremental classifier and representation learning." In CVPR 2017.

[2] Liu, Yaoyao, et al. "Mnemonics Training: Multi-Class Incremental Learning without Forgetting." In CVPR 2020.

[3] Wang, Liyuan, et al. "Memory Replay with Data Compression for Continual Learning." In ICLR 2022.



(d) CIM-based CIL [ours]

- adopts pixel-selective compression strategy
- applies adaptive compression for dynamic CIL environments
- number of saved exemplars is increased
- little discriminativeness of exemplars is lost

Reference

- [1] Rebuffi, Sylvestre-Alvise, et al. "iCaRL: Incremental classifier and representation learning." In CVPR 2017.
- [2] Liu, Yaoyao, et al. "Mnemonics Training: Multi-Class Incremental Learning without Forgetting." In CVPR 2020.
- [3] Wang, Liyuan, et al. "Memory Replay with Data Compression for Continual Learning." In ICLR 2022.

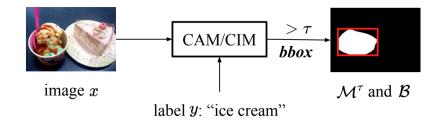
Overall Compression Framework

- Goal: reducing exemplar storage while losing little representativeness
- Core idea: downsampling only non-discriminative pixels

Reference [4] Zhou, Bolei, et al. "Learning Deep Features for Discriminative Localization." In CVPR 2016.

Overall Compression Framework

- Goal: reducing exemplar storage while losing little representativeness
- Core idea: downsampling only non-discriminative pixels



CAM:
$$\mathcal{M}^{CAM} = \frac{A - \min(A)}{\max(A) - \min(A)}, \ A = \omega_{i,y}^{\top} F(x; \theta_i)$$

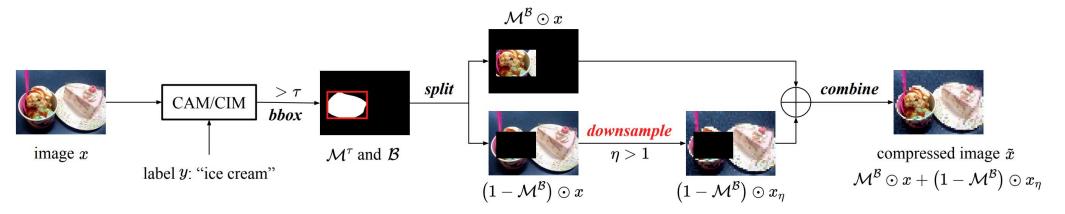
 θ_i : parameters of *i*-phase feature extractor $\omega_{i,y}$: parameters of *i*-phase classifier corresponding to *y*-th class

Reference

[4] Zhou, Bolei, et al. "Learning Deep Features for Discriminative Localization." In CVPR 2016.

Overall Compression Framework

- Goal: reducing exemplar storage while losing little representativeness
- Core idea: downsampling only non-discriminative pixels



CAM:
$$\mathcal{M}^{\text{CAM}} = \frac{A - \min(A)}{\max(A) - \min(A)}, \ A = \omega_{i,y}^{\top} F(x; \theta_i)$$

 θ_i : parameters of *i*-phase feature extractor $\omega_{i,y}$: parameters of *i*-phase classifier corresponding to *y*-th class

up to compression ratio and bounding box

 $= 1 - \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{H_{\mathcal{B}}W_{\mathcal{B}}}{HW}\right)$

storage: $m_{\tilde{x}} = \frac{H_{\mathcal{B}}W_{\mathcal{B}}}{HW} + \frac{1}{n}\left(1 - \frac{H_{\mathcal{B}}W_{\mathcal{B}}}{HW}\right)$

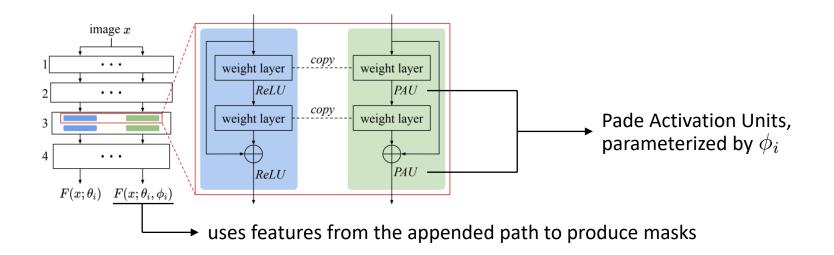
Reference

[4] Zhou, Bolei, et al. "Learning Deep Features for Discriminative Localization." In CVPR 2016.

Class-Incremental Masking

- Goal: applying adaptive compression for dynamic CIL environments
- Core idea: generating compression masks with the CIM module

CIM module: integrated as an "extension" on the original feature extractor



111

Reference

[5] Molina, Alejandro, et al. "Pade Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks." In ICLR 2019.

٠

Task-level Optimization

Class-Incremental Masking

We organize the optimization of the whole model into tw

whole model into two levels: task-level and mask-level.

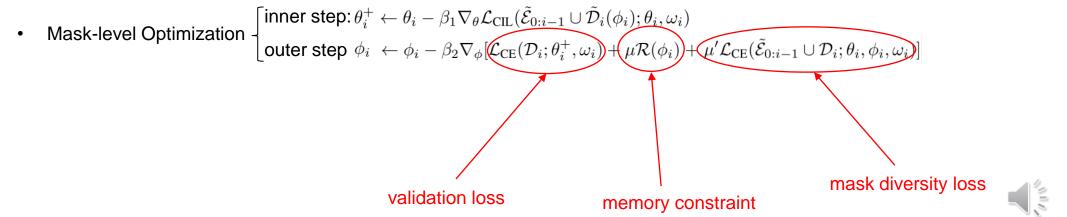
$$(\theta_{i}, \omega_{i}) \leftarrow (\theta_{i}, \omega_{i}) - \lambda \nabla_{(\theta, \omega)} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \mathcal{D}_{i}; \theta_{i}, \omega_{i})$$

$$(\theta_{i}, \omega_{i}) \leftarrow (\theta_{i}, \omega_{i}) - \lambda \nabla_{(\theta, \omega)} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \mathcal{D}_{i}; \theta_{i}, \omega_{i})$$
er step: $\theta_{i}^{+} \leftarrow \theta_{i} - \beta_{1} \nabla_{\theta} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \tilde{\mathcal{D}}_{i}(\phi_{i}); \theta_{i}, \omega_{i})$
er step: $\theta_{i}^{+} \leftarrow \phi_{i} - \beta_{1} \nabla_{\theta} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \tilde{\mathcal{D}}_{i}(\phi_{i}); \theta_{i}, \omega_{i})$

$$(\theta_{i}, \omega_{i}) \leftarrow (\theta_{i}, \omega_{i}) - \beta_{i} \nabla_{\theta} \mathcal{L}_{\text{CIL}}(\tilde{\mathcal{E}}_{0:i-1} \cup \tilde{\mathcal{D}}_{i}(\phi_{i}); \theta_{i}, \omega_{i})$$

Algorithm 1: CIM-based CIL (*i*-th phase, $i \ge 1$)

Input: New data \mathcal{D}_i ; old compressed exemplars



Reference

[5] Molina, Alejandro, et al. "Pade Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks." In ICLR 2019.

Comparing with SOTA

	Learn	ing from	Scratch	(LFS)		Learning from Half (LFH)						
Method Food-101		ImageNet-100		1	Food-101		Ime	ImageNet-100				
	N=5	10	20	5	10	20	5	10	25	5	10	25
iCaRL [37]	69.66	62.18	56.70	73.90	67.06	62.36	60.13	53.42	46.87	62.53	59.88	52.97
WA [50]	70.94	63.69	58.45	74.64	68.62	63.20	63.55	57.60	52.48	65.75	63.71	58.34
PODNet [13]	68.03	61.24	47.38	72.14	63.96	53.69	75.37	70.01	65.32	75.54	74.33	68.33
AANets [26]	69.46	61.59	48.83	72.98	65.77	55.36	76.07	71.22	66.93	76.96	75.58	71.78
DER [48]	$\overline{73.88}$	70.76	64.39	78.50	76.12	73.79	78.13	73.45		79.08	77.73	
DER w/ ours	75.63	73.09	69.17	79.63	77.57	75.36	79.25	75.76	-	80.30	79.05	-
FOSTER [44]	$-\bar{7}\bar{5}.\bar{0}\bar{3}$	72.72	66.73	79.93*	76.55*	74.49	79.08	75.07	$\bar{68.08}$	-60.07^{\dagger}	77.54	$\bar{7}\bar{2}.\bar{4}\bar{0}^{*}$
FOSTER w/ ours	76.44	74.85	70.20	80.58	77.94	75.23	79.76	76.86	70.50	80.93	78.66	75.74

• serves as a plug-in module to baselines

• achieves consistent performance improvements in multiple settings and datasets

Reference

[6] Yan, Shipeng, et al. "DER: Dynamically Expandable Representation for Class Incremental Learning." In CVPR 2021.

[7] Wang Fuyun, et al. "FOSTER: Feature Boosting and Compression for Class-Incremental Learning." In ECCV 2022.

Comparing with SOTA

Memory Budget		N	=5	<i>N</i> =10		
Budget	Method	Avg.	Last	Avg.	Last	
	iCaRL [37]	44.36	27.78	38.40	22.70	
M = 20k	WA [50]	58.37	50.62	54.10	45.66	
	DER [48]	67.49	59.75	66.73	58.62	
	FOSTER [44]	69.21	$\overline{64.88}$	68.34	60.14	
	FOSTER <i>w</i> / ours	69.93	66.05	69.53	62.07	
M = 5k	FOSTER	57.19	$\bar{49.42}^{-}$	54.72	44.96	
	FOSTER w/ ours	61.37	54.46	59.48	50.83	

On large-scale ImageNet-1000:

• brings larger performance improvement under stricter memory budget

Ablation Studies

A blatten Mathed	Food	-101	ImageNet-100			
Ablation Method	N=10	20	10	20		
1 Baseline	72.72	66.73	76.55	72.37		
2 Artifact Aug.	71.38	66.03	75.63	71.45		
3 Full Comp.	73.03	67.38	76.92	73.26		
4 Random Acti.	73.10	67.54	76.88	73.54		
5 Center Acti.	73.29	67.88	76.78	73.82		
6 Class Acti.	73.76	68.65	77.21	74.67		
7 Phase-wise τ	73.83	69.17	77.06	74.78		
8 Joint Train	73.44	69.01	77.34	74.59		
9 BOP (ours)	74.85	70.20	77.94	75.23		
10 LastBlock Only	74.55	69.87	77.72	74.86		
11 Fg Compressed	75.02	70.13	77.87	75.46		

- Line 1-2: SOTA baselines.
- Line 3-6: different activation methods.
- Line 7-9: different optimization strategies.

000

• Line 10-11: two variants.

SINGAPORE MANAGEMENT

Computing and Information Systems

Metric	Small	Middle	Large
Mean of #Exemplars	39.40	38.30	34.77
Last Acc. (%, baseline)	66.13	68.40	69.93
Last Acc. (%, ours)	70.00	71.10	72.26
Improvement (%)	+3.87	+3.65	+2.33

baseline: 20 exemplars/class.

• achieves larger performance boost for small objects

Thanks for listening!

Paper

Code

