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Reference
[1] Rebuffi, Sylvestre-Alvise, et al. “iCaRL: Incremental classifier and representation learning.” In CVPR 2017.
[2] Liu, Yaoyao, et al. “Mnemonics Training: Multi-Class Incremental Learning without Forgetting.” In CVPR 2020.
[3] Wang, Liyuan, et al. “Memory Replay with Data Compression for Continual Learning.” In ICLR 2022.

(a) iCaRL [related]
• maintains a memory with limited capacity
• selects exemplars using herding technique 



SMU Classification: Restricted

Research Background: Exemplar-based CIL

Reference
[1] Rebuffi, Sylvestre-Alvise, et al. “iCaRL: Incremental classifier and representation learning.” In CVPR 2017.
[2] Liu, Yaoyao, et al. “Mnemonics Training: Multi-Class Incremental Learning without Forgetting.” In CVPR 2020.
[3] Wang, Liyuan, et al. “Memory Replay with Data Compression for Continual Learning.” In ICLR 2022.

(b) Mnemonics [related]
• distills exemplars as optimizable parameters
• one exemplar carries more information
• number of saved exemplars is not changed
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(c) MRDC [related]
• compresses exemplars with JPEG algorithm
• discriminativeness of each exemplar is weaken
• number of saved exemplars is increased
• aims to trade-off between quality and quantity
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(d) CIM-based CIL [ours]
• adopts pixel-selective compression strategy
• applies adaptive compression for dynamic CIL environments
• number of saved exemplars is increased
• little discriminativeness of exemplars is lost•
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Reference
[4] Zhou, Bolei, et al. “Learning Deep Features for Discriminative Localization.” In CVPR 2016.

• Goal: reducing exemplar storage while losing little representativeness
• Core idea: downsampling only non-discriminative pixels 
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[4] Zhou, Bolei, et al. “Learning Deep Features for Discriminative Localization.” In CVPR 2016.

CAM:

• Goal: reducing exemplar storage while losing little representativeness
• Core idea: downsampling only non-discriminative pixels 

: parameters of 𝑖-phase feature extractor
: parameters of 𝑖-phase classifier corresponding to 𝑦-th class
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Reference
[4] Zhou, Bolei, et al. “Learning Deep Features for Discriminative Localization.” In CVPR 2016.

storage:CAM:

• Goal: reducing exemplar storage while losing little representativeness
• Core idea: downsampling only non-discriminative pixels 

: parameters of 𝑖-phase feature extractor
: parameters of 𝑖-phase classifier corresponding to 𝑦-th class

up to compression ratio and bounding box
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Class-Incremental Masking

CIM module: integrated as an “extension” on the original feature extractor 

• Goal: applying adaptive compression for dynamic CIL environments
• Core idea: generating compression masks with the CIM module

uses features from the appended path to produce masks

Pade Activation Units, 
parameterized by 

Reference
[5] Molina, Alejandro, et al. “Pade Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks.” In ICLR 2019.
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Class-Incremental Masking

We organize the optimization of the whole model into two levels: task-level and mask-level. 

• Task-level Optimization

• Mask-level Optimization
inner step:

outer step:

validation loss
mask diversity loss 

memory constraint

Reference
[5] Molina, Alejandro, et al. “Pade Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks.” In ICLR 2019.
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Comparing with SOTA

Reference
[6] Yan, Shipeng, et al. “DER: Dynamically Expandable Representation for Class Incremental Learning.” In CVPR 2021.
[7] Wang Fuyun, et al. “FOSTER: Feature Boosting and Compression for Class-Incremental Learning.” In ECCV 2022.

• serves as a plug-in module to baselines
• achieves consistent performance improvements in multiple settings and datasets
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Comparing with SOTA

On large-scale ImageNet-1000:
• brings larger performance improvement under stricter memory budget
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Ablation Studies

• Line 1-2: SOTA baselines.
• Line 3-6: different activation methods.
• Line 7-9: different optimization strategies.
• Line 10-11: two variants.
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Performances on Different-Size Objects

baseline: 20 exemplars/class.

• achieves larger performance boost for small objects
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Thanks for listening!

Paper                  Code
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