

Revisiting Reverse Distillation for Anomaly Detection

Tran Dinh Tien1Anh Tuan Nguyen1Nguyen Hoang Tran1Ta Duc Huy1Soan T.M. Duong1,3Chanh D. Tr. Nguyen1,2Steven Q. H. Truong1,2¹VinBrain JSC, Vietnam²VinUniversity, Vietnam³Le Quy Don Technical University, Vietnam

Poster THU-PM-374 June 22, CVPR 2023

Motivation

- Recent SOTA methods (PatchCore, CFA, etc) for anomaly detection demonstrated excellent accuracy but come with a latency trade-off.
- How can we develop a method that achieves high accuracy and fast inference for **real-world applications**?
- We identify the limitations of the RD approach (Deng and Li) by examining feature compactness and anomalous signal suppression, then introducing the multi-task learning design.

Performance results of our RD++ method

- 1 * New SOTA accuracy on MVTEC dataset
 - * 6.x faster than PatchCore, 2.x faster than CFA

2. Strong generalizability in multiple datasets with different domains

Datasets	Detection (AUROC sample)	Localization (AUROC pixel)	Localization (PRO)
MVTEC	Top 1	Top 1	Top 1
BTAD	Top 1	Top 2	Top 1
Retinal OCT	Top 1	Top 1	Top 1

Comparing architecture: RD++ (our) vs RD

1. Feature compactness task: by presenting a self-supervised optimal transport method

2. Anomalous signal suppression task: by simulating pseudo-abnormal samples with simplex noise and minimizing the reconstruction loss.

Feature compactness task:

1. Self-supervised optimal transport loss (SSOT): ensuring pair-wise feature spaces in a mini-batch of normal images are close by minimizing the de-biased Sinkhorn divergence between their probability measures.

Feature compactness task:

2.Contrast loss: supports projection layers learning compact embedding by setting projected normal features apart from abnormal features.

Anomalous signal suppression task

1. Simulating pseudo-abnormal samples via Simplex noise.

2. Reconstruction loss guide the projection layer to know how to reconstruct the normal feature space from the pseudo-abnormal feature.

Overall Loss:
$$\mathcal{L} = \mathcal{L}_{\mathrm{KD}} + \alpha \mathcal{L}_{\mathrm{SSOT}} + \beta \mathcal{L}_{\mathrm{Recon}} + \gamma \mathcal{L}_{\mathrm{Con}}$$

RD++ inference process

* Teacher's output embeddings are passed to their counterpart projection layer, then forward to student.
* Since the projection layer is lightweight, the inference time is almost the same as the baseline RD.

Method Results (%)

MVTEC dataset					
	Detection	Localization			
	AUROC sample	AUROC pixel	PRO		
CSFLow	98.72	_	_		
FastFlow	96.31	97.87	_		
CFA	99.17	98.15	94.44		
PatchCore	99.1	98.06	93.40		
RD	98.46	97.81	93.93		
RD++(Our)	99.44	98.25	94.99		

BTAD dataset					
	Detection	Localization			
	AUROC sample	AUROC pixel	PRO		
FastFlow	90.97	96.33	71.43		
CFA	94.20	96.83	73.10		
PatchCore	92.68	97.35	59.97		
RD	94.30	97.67	77.10		
RD++(Our)	95.63	97.43	77.30		

1. RD++ achieves highest accuracy at both detection and localization, with very fast inference

2. RD++ indicates strong generalizability in multiple datasets with different domains

Method analysis

What can the student see?

(i) Feature compactness: by calculating MSE among features of the normal samples. **RD++ enjoys a much denser** feature space while RD has a wider spread distance distribution

Method analysis

What can the student see?

(i) Feature compactness: by calculating MSE among features of the normal samples. **RD++ enjoys a much denser** feature space while RD has a wider spread distance distribution

(ii) Anomalous signal suppression: by calculating the MSE between each of the abnormal samples with every normal sample. The inter-class MSE distribution of RD++ is also narrower than RD. The feature distance between a normal and an abnormal sample **should be close** because the anomalous signals from the abnormal sample are suppressed, making it looks like a normal sample.

Conclusion and future work

Summary: Our approach obtains competitive accuracy for anomaly detection and real time inference. We hope the method will be **helpful in real applications** and pave the way for further advances in this field.

Future work: We aim to apply the method to other tasks besides anomaly detection, such as domain adaptation, where **invariant representation** is an essential factor. The method can benefit feature invariants through projection layers via compact learning and the ability to recover standard information when domains change.

Thank you for your listening

