

LightedDepth: Video Depth Estimation in Light of Limited Inference View Angles

Shengjie Zhu and Xiaoming Liu Michigan State University

LightedDepth: Video Depth Estimation in Light of Limited Inference View Angles

- Observation: Limited Camera View
- Challenge: Camera Pose is Needed
- Solution:

Optimize in 2D
Correspondence rather than
3D

2. Rely on Depth Prior Learning

3. Connect Two with Efficient Camera Scale Estimation

Problem Introduction

Two-View Video Depth Estimation or SfM

Source

Depth

Support

Correspondence

Comparison to Classic SfM

- Two-View SfM Conducts in Limited Views
- Compared to Simplified SfM, Resemble more to Video-Depth Estimation

Applications Two-View SfM

AR Rendering

NerF Rendering

- View Angles are limited
- Challenge for COLMAP

Image Courtesy:

- https://www.youtube.com/watch?v=RRBpz2zaA-w
- https://www.matthewtancik.com/nerf

Two-View SfM as Video Depth Estimation

Comparison to Classic SfM

Observation:

- Two-View SfM Conducts in Limited Views
- Compared to Simplified SfM, Resemble more to Video-Depth Estimation

- Solution:
 - Rely on 3D prior
- Rely on 2D Constraint

• Ours

Normalized Pose from Correspondence

Our Pose Estimation

 Normalized Pose Estimation with RANSAC on 2D Correspondence

• Epipolar Geometry:

• Image Courtesy: https://docs.opencv.org/3.4/da/de9/tutorial_py_epipolar_geometry.html

Prior Pose Estimation

 Jointly Estimate Pose & Depth with Deep-Bundle Adjustment in 3D Space

• Image Courtesy: https://www.google.com/imgres?imgurl=https%3A%2F%2Fi.ytimg.com

Our Pose Estimation

	Mehod		A	11	Background		
			F1-epe	F1-a1	F1-epe	F1-a1	
Type1 🔶	RAFT		1.284	4.539	1.238	4.759	
Type2 →	DeepV2D		9.957	22.610	2.180	9.789	
	Ours		9.321	20.723	1.631	7.692	

- Type 1: Correspondence from 2D Matching
- Type 2: Correspondence from 3D Bundle-Adjustment
- Correspondence from Type1 outperforms Type2

Type1:

 Two View Image Matching

- Multiview
- Apply Bundle Adjustment

Two-View SfM

Correspondence

Frame \mathbf{I}_m

Frame I_n

- Pose Scale Adjust Correspondence in Epipolar Line
- Adjust Scale to Align towards Correspondence (Optical Flow)

Frame \mathbf{I}_m

Frame I_n

- Pose Scale Adjust Correspondence in Epipolar Line
- Adjust Scale to Align towards Correspondence (Optical Flow)

Frame \mathbf{I}_m

Frame I_n

- Pose Scale Adjust Correspondence in Epipolar Line
- Adjust Scale to Align towards Correspondence (Optical Flow)

- Pose Scale is a 1 DoF unknown scale ٠
- Use Bucket Sorting to Select the Optimal Scale ٠

Sorting Bucket of size m

Two-View SfM

Video Depth as Residual Monocular Depth Estimation

Frame 1

Frame 2

Monocular Depth

Residual Depth

Video Depth

🐔 CVL Computer Vision Lab

Corner Cases

• Translation Dominant Case

Issue:

- Normalized Pose estimation degenerates on Rotation Dominant Cases.
- However, the latter is common in Indoor Setting

Solution:

- Actively Search KeyFrame with Sufficient Camera Scale
- Include Monocular Depthmap Projection as Additional Constraint

• Rotation Dominant Case

Entire Framework

• Spawn Normalized Pose Candidates with Five-Point Algorithm

Entire Framework

- Spawn Normalized Pose Candidates with Five-Point Algorithm
- Compute Camera Scale, followed by Epipolar Constraint and Projection Constraint

Entire Framework

- Spawn Normalized Pose Candidates with Five-Point Algorithm
- Compute Epipolar Constraint, Camera Scale, and Projection Constraint
- Acquire Best Pose

Result

Our method Significantly outperform even Prior work using Five Frames

 $\left(\left(\right) \right)$

• KITTI Dataset

Our method Significantly outperform even Prior work using Five Frames

• KITTI Dataset

Our method Significantly outperform even Prior work using Five Frames

• KITTI Dataset

Method	Venue	Frame	Labels	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
DORN 14	CVPR'18	1	D	0.069	0.300	2.857	0.112	0.945	0.998	0.996
BTS [27]	Arxiv'18	1	D	0.059	0.245	2.756	0.096	0.956	0.993	0.998
AdaBins 2	CVPR'21	1	D	0.058	0.190	2.360	0.088	0.964	0.995	0.999
NeWCRFs 58	CVPR'22	1	D	0.052	0.155	2.129	0.079	0.974	0.997	0.999
Ours + BTS 27		2	D+F	0.037	0.110	1.809	0.059	0.987	0.998	0.999
Ours + AdaBins 2	CVPR'23	2	D+F	0.045	0.108	1.817	0.064	0.987	0.998	0.999
Ours + NeWCRFs 58		2	D+F	0.041	0.107	1.748	0.059	0.989	0.998	0.999
BA-Net [40]	ICLR'19	5	D+P	0.083	0.025	3.640	0.134	-	-	3 - 1
SfMR 50	CVPR'21	2	D+F+P	0.055	0.224	2.273	0.091	0.956	0.984	0.993
DeepMLE [8]	Arxiv'22	2	D+F+P	0.060	0.203	2.257	0.089	0.967	0.995	0.999
DRO 20	Arxiv'21	2	D+P	0.047	0.199	2.629	0.082	0.970	0.994	0.998
MaGNet [1]	CVPR'22	3	D	0.051	0.160	2.077	0.079	0.974	0.995	0.999
DeenW2D [41]	ICLR'20	2	D+P	0.064	0.350	2.964	0.120	0.946	0.982	0.991
Deep V2D [41]		5	D+P	0.037	0.174	2.005	0.074	0.977	0.993	0.997
DeepV2cD 22	ICPRAI'22	5	D+P	0.037	0.167	1.984	0.073	0.978	0.994	-
Ours + MonoDepth2 18		2	D+F	0.032	0.106	1.889	0.057	0.986	0.998	0.999
Ours + BTS 27	CVPR'23	2	D+F	0.029	0.098	1.729	0.053	0.989	0.998	0.999
Ours + AdaBins 2		2	D+F	0.030	0.089	1.655	0.052	0.989	0.998	0.999
Ours + NeWCRFs 58		2	D+F	0.028	0.087	1.597	0.049	0.991	0.998	0.999

• On Outdoor KITTI

19,

Method	Venue	Frame	Labels	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
DORN 14	CVPR'18	1	D	0.069	0.300	2.857	0.112	0.945	0.998	0.996
BTS [27]	Arxiv'18	1	D	0.059	0.245	2.756	0.096	0.956	0.993	0.998
AdaBins [2]	CVPR'21	1	D	0.058	0.190	2.360	0.088	0.964	0.995	0.999
NeWCRFs 58	CVPR'22	1	D	0.052	0.155	2.129	0.079	0.974	0.997	0.999
Ours + BTS 27		2	D+F	0.037	0.110	1.809	0.059	0.987	0.998	0.999
Ours + AdaBins 2	CVPR'23	2	D+F	0.045	0.108	1.817	0.064	0.987	0.998	0.999
Ours + NeWCRFs 58		2	D+F	0.041	0.107	1.748	0.059	0.989	0.998	0.999
BA-Net [40]	ICLR'19	5	D+P	0.083	0.025	3.640	0.134	-	-	-
SfMR [50]	CVPR'21	2	D+F+P	0.055	0.224	2.273	0.091	0.956	0.984	0.993
DeepMLE [8]	Arxiv'22	2	D+F+P	0.060	0.203	2.257	0.089	0.967	0.995	0.999
DRO 20	Arxiv'21	2	D+P	0.047	0.199	2.629	0.082	0.970	0.994	0.998
MaGNet [1]	CVPR'22	3	D	0.051	0.160	2.077	0.079	0.974	0.995	0.999
	ICLR'20	2	D+P	0.064	0.350	2.964	0.120	0.946	0.982	0.991
Deep v 2D [41]		5	D+P	0.037	0.174	2.005	0.074	0.977	0.993	0.997
DeepV2cD [22]	ICPRAI'22	5	D+P	0.037	0.167	1.984	0.073	0.978	0.994	-
Ours + MonoDepth2 18		2	D+F	0.032	0.106	1.889	0.057	0.986	0.998	0.999
Ours + BTS 27	CVDD'22	2	D+F	0.029	0.098	1.729	0.053	0.989	0.998	0.999
Ours + AdaBins 2	CVPR 23	2	D+F	0.030	0.089	1.655	0.052	0.989	0.998	0.999
Ours + NeWCRFs 58		2	D+F	0.028	0.087	1.597	0.049	0.991	0.998	0.999
• On Outdoor KITTI										

Method	Venue	Frame	Abs Rel	Sc Inv	RMSE	log10	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
DORN [14]	CVPR'18	1	0.115	-	0.509	-	0.828	0.965	0.992
BTS 27	Arxiv'18	1	0.108	0.115	0.404	0.047	0.885	0.978	0.994
AdaBins [2]	CVPR'21	1	0.103	0.106	0.370	0.044	0.903	0.983	0.997
NewCRFs [58]	CVPR'22	1	0.095	0.090	0.334	0.041	0.922	0.992	0.998
Ours + BTS 27		2	0.102	0.098	0.356	0.044	0.903	0.984	0.997
Ours + AdaBins 2	CVPR'23	2	0.095	0.089	0.326	0.040	0.923	0.990	0.998
Ours + NewCRFs 58		2	0.090	0.080	0.306	0.038	0.935	0.995	0.999
DfUSMC 21	CVPR'16	Multi	0.447	0.456	1.793	0.169	0.487	0.697	0.814
DeMoN [46]	CVPR'17	2	0.144	0.179	0.775	0.061	0.805	0.951	0.985
DeenV2D [41]	ICLR'20	2	0.094	0.133	0.521	0.403	0.905	0.975	0.992
Deep v 2D [41]		9	0.061	0.094	0.403	0.026	0.956	0.989	0.996
Ours + BTS 27		2	0.070	0.098	0.280	0.030	0.948	0.991	0.998
Ours + AdaBins 2	CVPR'23	2	0.064	0.089	0.255	0.027	0.961	0.994	0.999
Ours + NewCRFs 58		2	0.057	0.080	0.230	0.025	0.971	0.996	0.999

Visual Result

🐔 CVL Computer Vision Lab

Thanks For Watching!

