

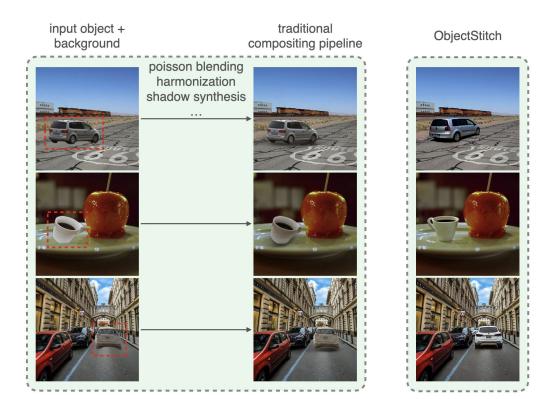
ObjectStitch: Object Compositing with Diffusion Model

Yizhi Song¹, Zhifei Zhang², Zhe Lin², Scott Cohen², Brian Price², Jianming Zhang², Soo Ye Kim², Daniel Aliaga¹ ¹Purdue University, ²Adobe Research

> Poster: THU-AM-175 Paper: https://arxiv.org/pdf/2212.00932.pdf

ObjectStitch Overview

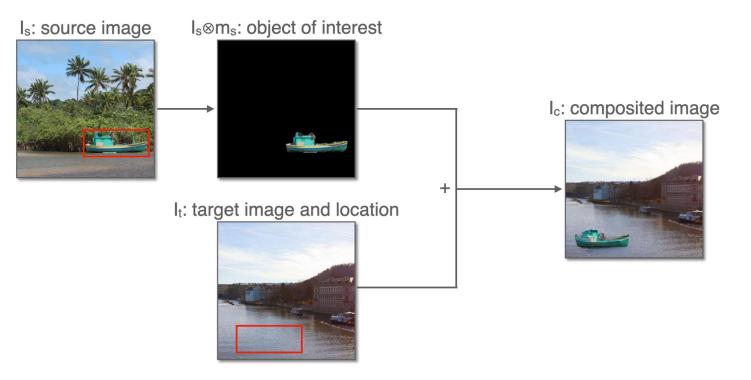
- ObjectStitch simultaneously handles multiple aspects of 2D object compositing
- ObjectStitch is a self-supervised model that does not require task-specific annotation
- We use a content adaptor to maintain categorical semantics and object appearance



2D Object Compositing

Task definition:

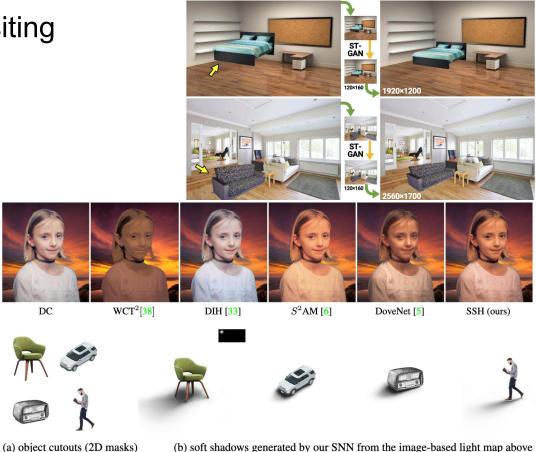
- A common scenario in image editing: foreground image A + background image B = ?
- Given the location and scale in the target image, how to generate a realistic composite image that preserves the identity of the source object?



Related Works - Image Compositing

- ST-GAN^[1]: geometric correction
- SSH^[2]: harmonization
- SSN^[3]: shadow synthesis

Each of them focuses on a single sub-task They cannot generate novel view



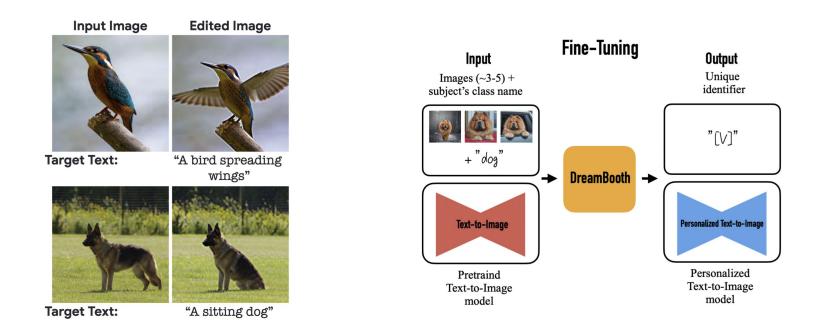
[1] Lin, Chen-Hsuan, et al. "St-gan: Spatial transformer generative adversarial networks for image compositing." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

[2] Jiang, Yifan, et al. "SSH: a self-supervised framework for image harmonization." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

[3] Sheng, Yichen, Jianming Zhang, and Bedrich Benes. "SSN: Soft shadow network for image compositing." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.

Related Works - Object Personalization with Diffusion Models

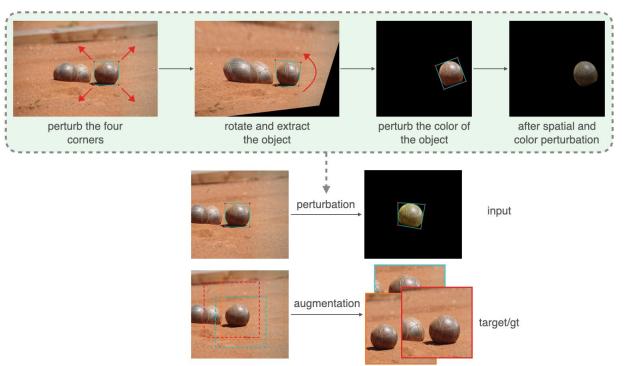
- DreamBooth^[4], Imagic^[5]
- Limitation: the model needs to be fine-tuned for each subject on paired images



[4] Ruiz, Nataniel, et al. "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
 [5] Kawar, Bahjat, et al. "Imagic: Text-based real image editing with diffusion models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

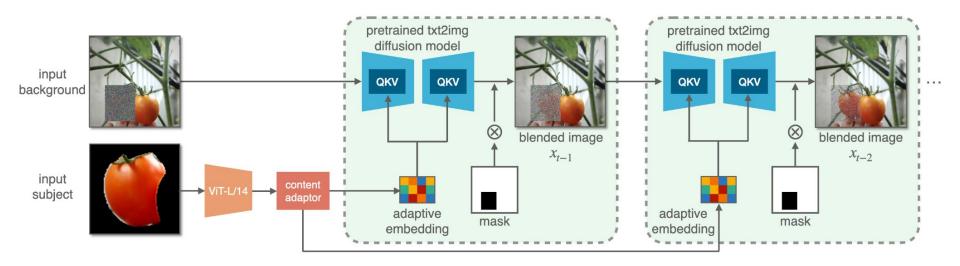
Data Preparation and Self-Supervision

- Task-specific training data is expensive to obtain
- Source: Pixabay
- Augmentations: warping \rightarrow rotation \rightarrow color shifting \rightarrow crop
- Training pairs: segmented object (augmented) + original image



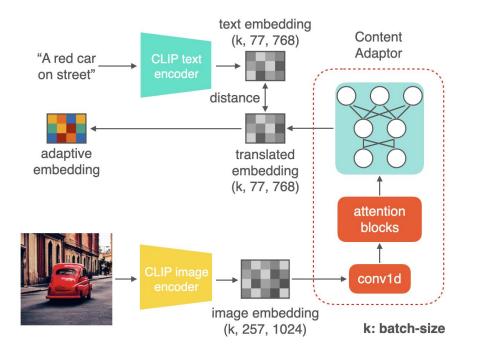
ObjectStitch: Architecture

- Consist of: a generator (pretrained T2I DM) + a content adaptor
- The content adaptor generates adaptive embedding that preserves details
- The mask is applied on the generated image at each iteration



Content Adaptor

- Motivation:
 - Bridge the domain gap between text embedding and image embedding
 - Resolve the mismatch in their dimensions
 - Trained on LAION image-caption pairs



$$\mathcal{L}_{dist} = \|T(\tilde{E}) - E\|_1$$

where *T* is the content adaptor, *E* is the target text embedding

Training

• Content adaptor pretraining

 $\mathcal{L}_{dist} = \|T(\tilde{E}) - E\|_1$ where *T* is the content adaptor

• Content adaptor fine-tuning

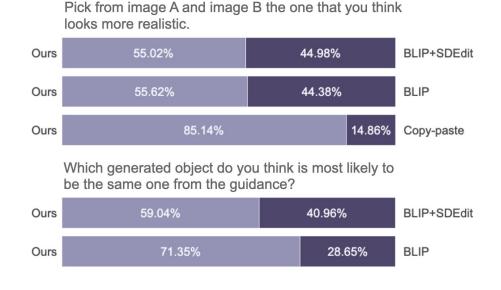
 $\mathcal{L}_{adapt} = \mathbb{E}_{T, \epsilon \sim \mathcal{N}(0,1)}[\|\epsilon - \epsilon_{\theta}(I_t \circ M, t, T(\widetilde{E}))\|_2^2] \text{ where } I_t \text{ is a noisy version of } I \text{ at step } t$

• Generator fine-tuning

 $\mathcal{L}_{gen} = \mathbb{E}_{\hat{E}, \epsilon \sim \mathcal{N}(0, 1)} [\|\epsilon - \epsilon_{\theta} (I_t \circ M, t, \hat{E})\|_2^2]$

User Studies

- Collect a real test dataset of 503 object-background pairs
- A side-by-side comparison of the results
- Diffusion model-based baselines: BLIP^[6] and SDEdit^[7]
- Image blending-based baselines + shadow synthesis



Method	DIB+SGRNet	GPGAN+SGRNet	PB+SGRNet
Ours	82.93%	84.74%	76.91%

BLIP: Li *et al.* 2022; SDEdit: Meng *et al.* 2021; DIB: Zhang *et al.* 2020; GPGAN: Wu *et al.* 2019; PB: Pérez *et al.* 2003; SGRNet: Hong *et al.* 2022

[6] Li, Junnan, et al. "Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation." *International Conference on Machine Learning*. PMLR, 2022. [7] Meng, Chenlin, et al. "Sdedit: Image synthesis and editing with stochastic differential equations." *arXiv preprint arXiv:2108.01073* (2021).

Quantitative Results

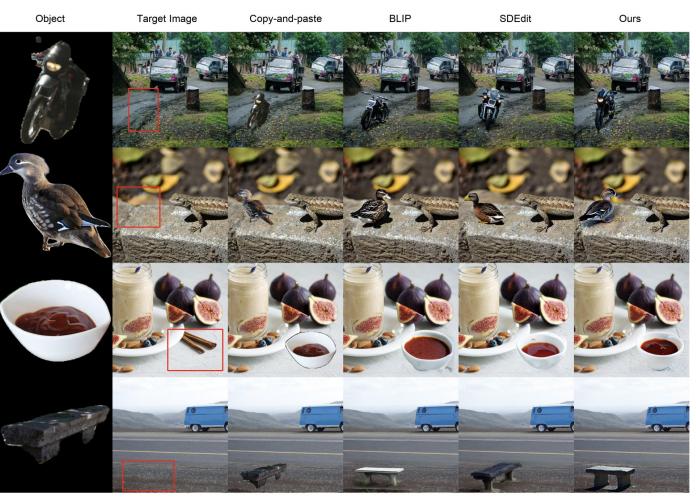
- Metrics: FID^[8], LPIPS^[9], modified CLIP^[10] scores
 - CLIP text score and CLIP image score

$$\begin{aligned} \mathcal{C}_{txt} &= E\left[s \cdot f(I_{pred}) \cdot g\left(B(I_{gt})\right)\right] & \text{where } B \text{ is pretrained BLIP} \\ \mathcal{C}_{img} &= E\left[s \cdot f(I_{pred}) \cdot f(I_{gt})\right] \end{aligned}$$

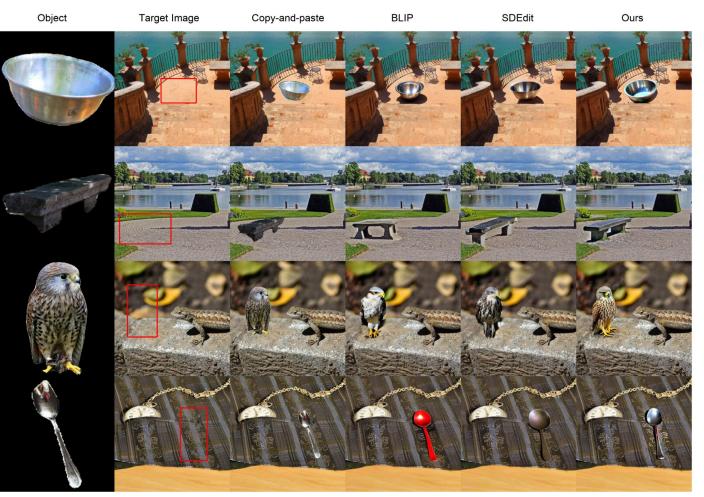
Method	Crop	$\mathrm{FID}\downarrow$	LPIPS \downarrow	CLIP text score \uparrow	CLIP image score \uparrow
BLIP	X	18.3673	0.0923	29.6719	95.5625
SDEdit	X	17.4963	0.0870	29.6563	96.1250
Ours	X	15.8191	0.0835	29.8594	97.0000
BLIP	1	28.0690	0.2463	29.0313	91.1250
SDEdit	\checkmark	27.0630	0.2312	29.0625	91.8750
Ours	✓	24.4719	0.2223	29.4844	93.7500

[8] Heusel, Martin, et al. "Gans trained by a two time-scale update rule converge to a local nash equilibrium." Advances in neural information processing systems 30 (2017).
[9] Zhang, Richard, et al. "The unreasonable effectiveness of deep features as a perceptual metric." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
[10] Hessel, Jack, et al. "Clipscore: A reference-free evaluation metric for image captioning." arXiv preprint arXiv:2104.08718 (2021).

Qualitative Results



Qualitative Results



Conclusions

- We propose the first diffusion-based method to tackle object compositing
- We introduce a novel content adaptor module
- We present a fully self-supervised framework with data augmentation
- Our model outperforms the baselines on real-world examples