SHAN TON

2016 photogragh)

Robust Single Image Reflection Removal Against Adversarial Attacks

Zhenbo Song ¹, Zhenyuan Zhang ^{1*}, Kaihao Zhang ², Wenhan Luo ³, Zhaoxin Fan ⁴, Wenqi Ren ³, Jianfeng Lu ¹

¹Nanjing University of Science and Technology, ²Australian National University,

³Shenzhen Campus of Sun Yat-sen University, ⁴Renmin University of China

• • • • 1.The Single Image Reflection Removal Problem

$$I = \alpha T + (1 - \alpha) R$$

• • • • 2. Adversarial Attack Method

Adversarial attack objectives and regions

$$I' = I + R \cdot \delta, \tag{1}$$

$$\delta = \arg\max_{\|\delta\| \le \epsilon} O(f(I), f(I')) \tag{2}$$

Attack Model: PGD

Attack Objectives:

1) MSE:
$$O = ||f(I) - f(I')||_2$$
.

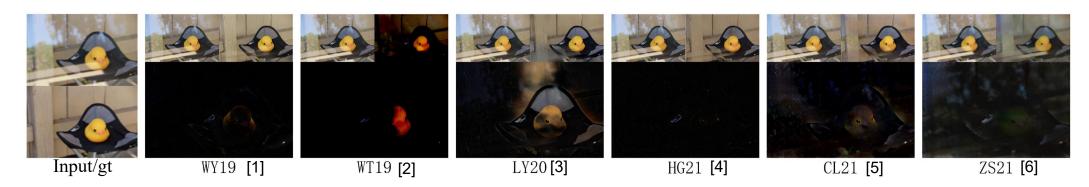
2) LPIPS:
$$O = \ell_{lpips}(f(I), f(I')).$$

Attack Region:

1) Full Region.

$$R=1$$
.

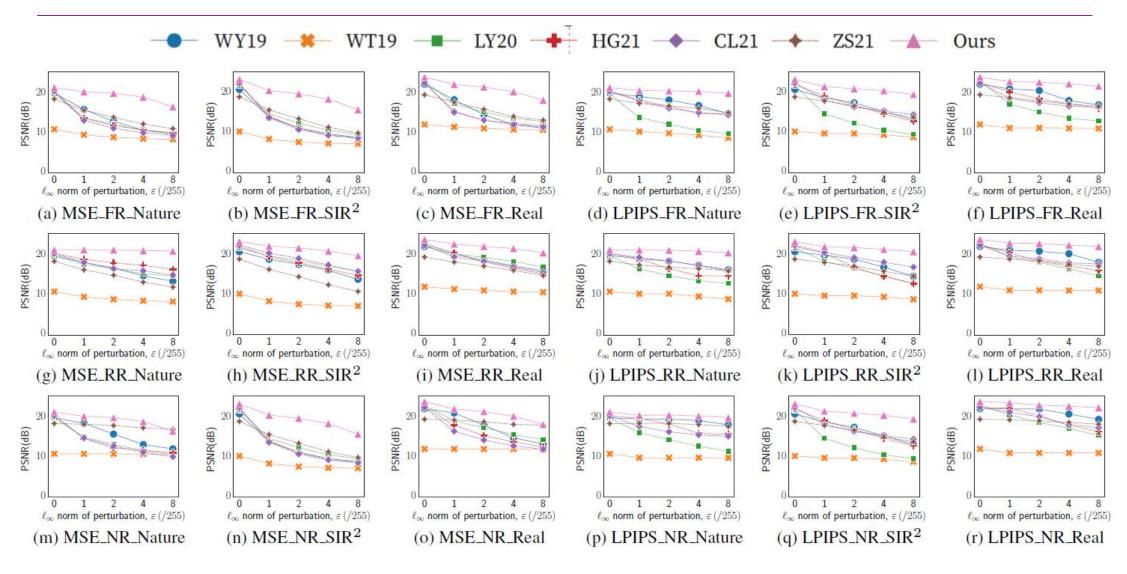
2) Reflection Region.


$$R = abs(f(I) - I) > \theta.$$

3) Non-reflection Region. $R = abs(f(I) - I) \le \theta$.

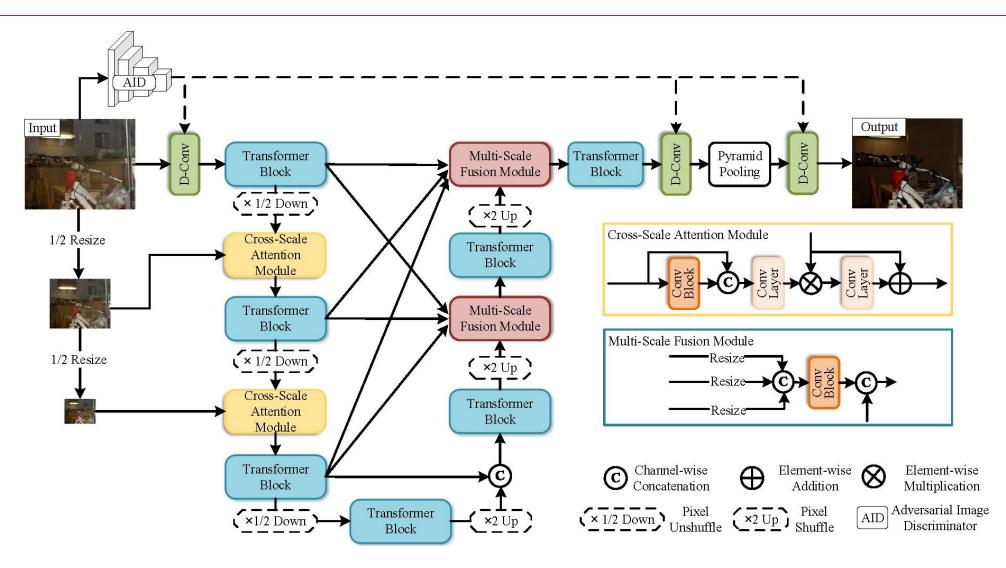
Perturbation Level: $\delta \in \{0,1,2,4,8\}/255$

• • • • 3. Robustness Evaluation

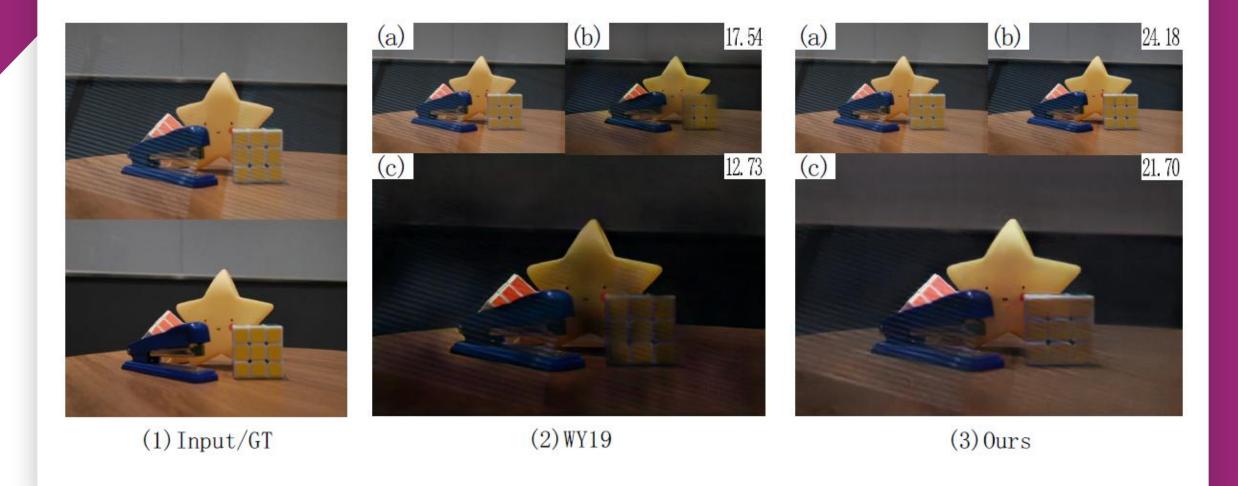


Visual Results

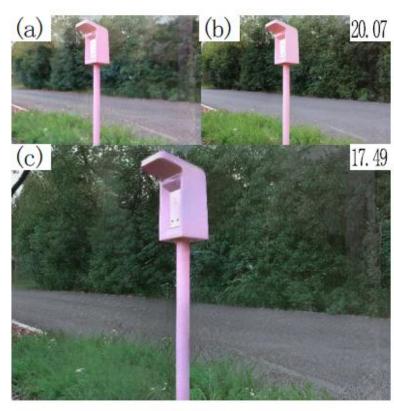
- [1] Kaixuan Wei, Jiaolong Yang, Ying Fu, David Wipf, and Hua Huang. Single image reflection removal exploiting misaligned training data and network enhancements. In IEEE Conference on Computer Vision and Pattern Recognition, 2019
- [2] Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, Guoqiang Han, and Shengfeng He. Single image reflection removal beyond linearity. In IEEE Conference on Computer Vision and Pattern Recognition, 2019.
- [3] Chao Li, Yixiao Yang, Kun He, Stephen Lin, and John E. Hopcroft. Single image reflection removal through cascaded refinement. In IEEE Conference on Computer Vision and Pattern Recognition, 2020.
- [4] Qiming Hu and Xiaojie Guo. Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation. Advances in Neural Information Processing Systems, 2021.
- [5] Ya-Chu Chang, Chia-Ni Lu, Chia-Chi Cheng, and Wei-Chen Chiu. Single image reflection removal with edge guidance, reflection classifier, and recurrent decomposition. In IEEE Conference on Computer Vision and Pattern Recognition, 2021.
- [6] Qian Zheng, Boxin Shi, Jinnan Chen, Xudong Jiang, Ling-Yu Duan, and Alex C. Kot. Single image reflection removal with absorption effect. In IEEE Conference on Computer Vision and Pattern Recognition, 2021.

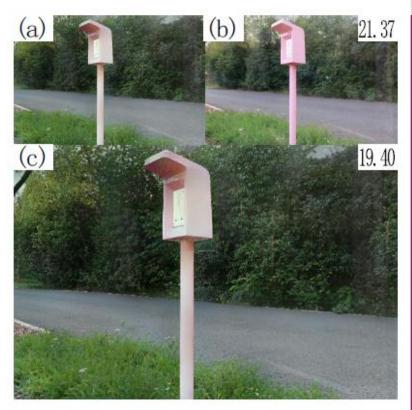

• • • • 3. Robustness Evaluation

• • • • 4. The Proposed Model

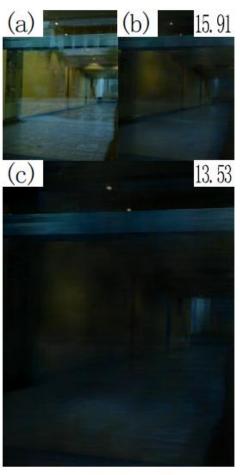

• • • • 4. The Results of the Proposed Model

		Nature		SIR^2		Real	
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
WY19 [1] w/o adv.	Clean	19.54	0.738	20.45	0.853	21.82	0.812
	MSE	$11.86^{\downarrow 7.68}$	$0.361^{\downarrow 0.377}$	$10.49^{\downarrow 9.97}$	$0.410^{\ \downarrow 0.442}$	$13.61^{\ \downarrow 8.21}$	$0.388 \stackrel{\downarrow 0.424}{}$
	LPIPS	$16.85^{\downarrow 2.69}$	$0.588 ^{\downarrow 0.149}$	$15.81^{4.65}$	$0.677 \stackrel{\downarrow 0.176}{\sim}$	$18.79^{\downarrow 3.04}$	$0.639^{\ \downarrow 0.173}$
WY19 [1] w/ adv.	Clean	$17.28^{\downarrow 2.26}$	$0.670^{\downarrow 0.067}$	$17.97^{\downarrow 2.49}$	$0.832^{\downarrow 0.021}$	$19.23^{\downarrow 2.59}$	$0.752^{\downarrow 0.060}$
	MSE	$16.08^{\downarrow 3.46}$	$0.613^{\ \downarrow 0.125}$	$16.54 \stackrel{\downarrow 3.92}{\sim}$	$0.769^{\ \downarrow 0.083}$	$18.61^{\ \downarrow 3.21}$	$0.718^{\downarrow 0.094}$
	LPIPS	$17.01 \stackrel{\downarrow 2.53}{\downarrow}$	$0.633^{\ \downarrow 0.105}$	$17.49 \stackrel{\downarrow 2.96}{\downarrow}$	$0.779 \stackrel{\downarrow 0.074}{\sim}$	$16.64 \stackrel{\downarrow 5.18}{\sim}$	$0.702^{\ \downarrow 0.110}$
Ours w/o adv.	Clean	20.33	0.758	23.43	0.894	22.26	0.826
	MSE	$10.35^{19.98}$	$0.264^{\ \downarrow 0.494}$	$9.18 ^{\downarrow 14.24}$	$0.317^{0.577}$	$11.92^{10.34}$	$0.274^{\downarrow 0.552}$
	LPIPS	$15.15 \stackrel{\downarrow 5.18}{\sim}$	$0.560^{\ \downarrow 0.198}$	$14.84^{\ \downarrow 8.59}$	$0.645 \stackrel{\downarrow 0.250}{\downarrow}$	$16.38 \stackrel{\downarrow 5.88}{\sim}$	$0.573^{\downarrow 0.253}$
Ours w/ adv.	Clean	$20.97^{\uparrow 0.64}$	$0.764^{\uparrow 0.006}$	$23.02^{\downarrow 0.41}$	$0.892^{\downarrow 0.002}$	$23.61^{\uparrow 1.35}$	$0.835^{\uparrow 0.009}$
	MSE	$18.53^{\downarrow 1.79}$	$0.726^{\downarrow 0.032}$	$18.25 \stackrel{\downarrow 5.17}{\sim}$	$0.821^{\ \downarrow 0.073}$	$20.15^{\ \downarrow 2.11}$	$0.752^{\downarrow 0.074}$
	LPIPS	$19.98 ^{\downarrow 0.35}$	$0.732^{\downarrow 0.026}$	$20.31 ^{\downarrow 3.12}$	$0.830^{\ \downarrow 0.064}$	$22.02^{\ \downarrow 0.24}$	$0.768 ^{\downarrow 0.058}$

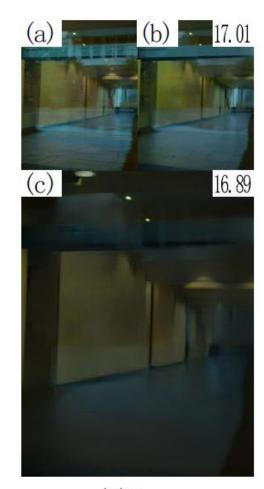

[1] Kaixuan Wei, Jiaolong Yang, Ying Fu, David Wipf, and Hua Huang. Single image reflection removal exploiting misaligned training data and network enhancements. In IEEE Conference on Computer Vision and Pattern Recognition, 2019



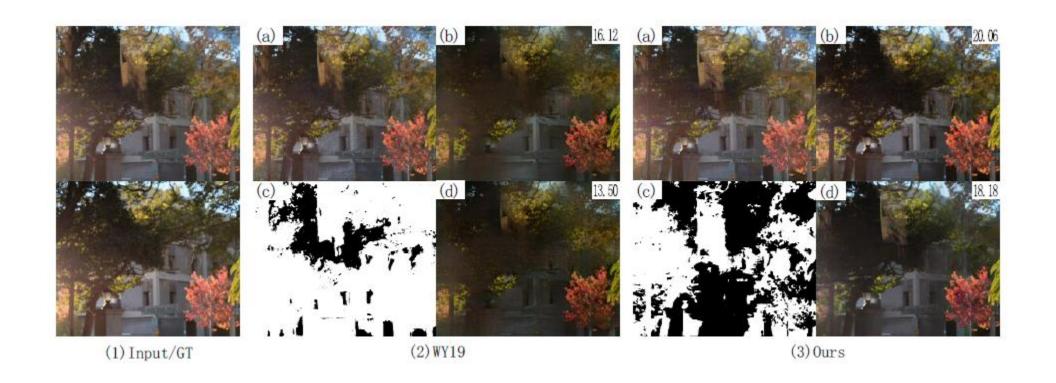
(1) Input/GT


(2) WY19

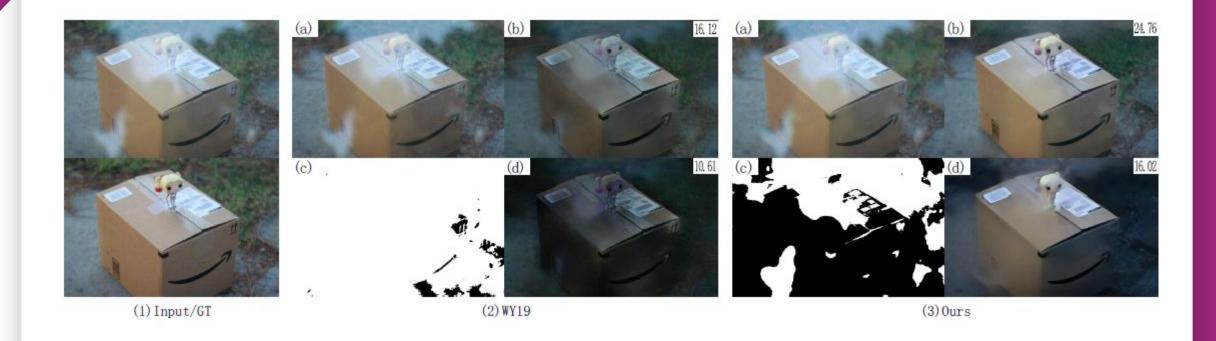
(3) Ours



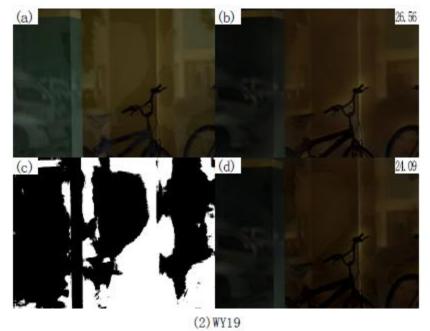
(1) Input/GT

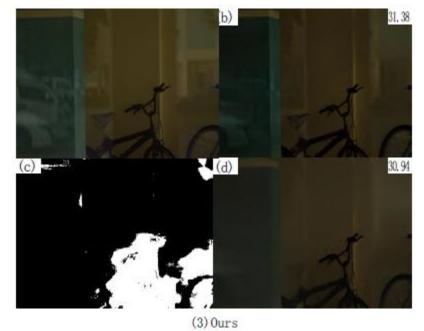


(2) WY19



(3) Ours





当前进展

