SmartAssign: Learning a smart knowledge assignment strategy for deraining and desnowing Yinglong Wang, Chao Ma, Jianzhuang Liu TUE-AM-350

Input

Restormer[Zamir CVPR22]

Input

HDCWNet[Chen ICCV21]

Ours

Existing Assignment Strategies

- Hard sharing
 - neglect the uniqueness of different tasks
- Soft sharing
 - each task has a network branch, leading to large model
- Adshare
 - still do not separate the uniqueness and connections of different tasks

Contributions

Solves issues

- Accurate knowledge assignment in multi-task learning
- Build a new transformer block to model the long- and short-range context depedencies

Contributions

- Propose a novel knowledge assignment strategy to excavate the connections and uniqueness of rain and snow, so that the connections are used to enhance both tasks and the uniqueness is applied to boost corresponding task and avoided from damaging other tasks
- Propose a novel knowledge contrast mechanism to boost the accuracy of knowledge assignment
- Propose a novel transformer block to combine the superiority of self-attention and convolution, and gate operations are introduced to alleviate the feature redudency

Network Structure

Our SmartAssign

GKFM: Gated Knowledge Filtering Module TKFF: Task-targeted Knowledge FeedForward GLSF-ViT: Gated Long and Short range feature Fusion Vision Transformer

Loss Functions

■ Charbonnier loss

$$\mathcal{L}_{char} = \sqrt{\|\mathbf{R} - \mathbf{G}\|^2 + \epsilon^2}$$

■ Gradient loss

$$\mathcal{L}_{grad} = \| \bigtriangledown \mathbf{R} - \bigtriangledown \mathbf{G} \|^2$$

Quasi-sparsity loss

$$\mathcal{L}_{sparsity} = \sum_{m,n} |\omega_{m,n} * \mathbf{R}| + |\omega_{m,n} * (\mathbf{I} - \mathbf{R})|$$

Recognition loss

$$\mathcal{L}_{recog} = \|\mathbf{R}_{re} - \mathbf{L}\|^2$$

Contrastive loss

$$\begin{aligned} \mathbf{Z} &= \frac{1}{3} (\mathbf{M}_{rk} \mathbf{M}_{rk}^{\top} / (\mathbf{M}_{rk} \mathbf{M}_{ck}^{\top} + \mathbf{M}_{rk} \mathbf{M}_{sk}^{\top}) \\ &+ \mathbf{M}_{ck} \mathbf{M}_{ck}^{\top} / (\mathbf{M}_{ck} \mathbf{M}_{rk}^{\top} + \mathbf{M}_{ck} \mathbf{M}_{sk}^{\top}) \\ &+ \mathbf{M}_{sk} \mathbf{M}_{sk}^{\top} / (\mathbf{M}_{sk} \mathbf{M}_{rk}^{\top} + \mathbf{M}_{sk} \mathbf{M}_{ck}^{\top})), \end{aligned}$$

$$\mathcal{L}_{contra} = \frac{1}{C^2} \sum_{i=1}^{C} \sum_{j=1}^{C} \mathbf{Z}(i,j),$$

Total loss

$$\mathcal{L} = \mathcal{L}_{char} + \mathcal{L}_{grad} + \mathcal{L}_{recog} + \lambda_1 \mathcal{L}_{sparsity} + \lambda_2 \mathcal{L}_{contra}$$

■ Visualizing the separation of unique and shared knowledge

Quantitative evaluation

• Quantitative comparisons on deraining

Datasets	MAXIM PSNR/SSIM	DGUNet PSNR/SSIM	MPRNet PSNR/SSIM	ASV-joint PSNR/SSIM	Restormer PSNR/SSIM	TUM PSNR/SSIM	Ours PSNR/SSIM
Rain-streak	33.01/0.924	32.47/0.919	32.11/0.917	31.08/0.905	32.91/0.923	30.72/0.892	33.16/0.931
Rain1200	30.78/0.897	31.54/0.896	<u>32.91/0.916</u>	31.77/0.893	31.48/0.901	29.57/0.858	33.07/0.927
Real-rain	33.53/ <u>0.958</u>	35.83/0.948	<u>36.04</u> /0.946	35.67/0.927	35.34/0.946	22.75/0.855	36.55/0.962

• Quantitative comparisons on desnowing

Methods	Snow100K-L	SRRS	CSD	
	PSNR/SSIM	PSNR/SSIM	PSNR/SSIM	
JSTASR	20.16/0.657	25.82/0.892	27.52/0.873	
HDCW	20.57/0.676	27.78/0.923	29.06/0.914	
TUM	25.66/0.851	28.03/0.926	<u>30.10/0.933</u>	
Ours	29.45/0.923	30.53/0.931	32.50/0.957	

Compared Methods

- MAXIM^[Tu CVPR 22], DGUNet^[Mou CVPR22]
- MPRNet^[Zamir CVPR21], JSTASR^[Chen ECCV20]
- ASV-joint^[Wang ECCV 20], Restormer^[Zamir CVPR22]
- TUM[Chen CVPR22], HDCW[Chen ICCV21]

■ Visual quality for deraining

Visual quality for desnowing

Thank you!