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Stereo Matching (SM)

Goal: Generate a disparity map Dpred of the left image : SM Network FΦ(X�, X�) → Dpred 

left image X�

right image X�  cost volume Feature extractor  cost aggregation disparity map Dpred

Existing Regular Stereo Matching Methods:  Main Improvement Module

Problem:  Poor Generalizability of Synthetic-to-realistic Domain



Domain Generalization 

 Source Domain (Training Data)

 Target Domain (Testing Data)

Goal: Train a task model that generalizes well on the unseen target domain data with only source domain training dataset

 Task Model (Classification)

CNN 
Network



Domain Generalized Stereo Matching
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Main Research Problem: how to train an effective SM network on only 
synthetic data to estimate reliable disparity map on unseen domain.
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Motivation

• Key for Domain Generalization
Learn domain-invariant feature (causal feature)

 Causal feature is invariant to certain transformations[1]

• Problem of Existing SM Networks
Exploiting common artifacts (e.g. consistent local RGB 
color statistics and overreliance on local chromaticity 
features) of synthetic stereo images as shortcuts[2].

• Intuitive Idea
Leverage the visual transformations that do not change 
the underlying domain-invariant feature to increase the 
diversity of training domain, thereby enhancing the 
generalization performance of SM network

[1] Ruoyu Wang. Out-of-distribution generalization with causal invariant transformations. CVPR2022
[2] WeiQin Chuah. Itsa: An information-theoretic approach to automatic shortcut avoidance and domain generalization in stereo matching networks. CVPR2022

Visualized example of three transformations



The pipeline of our domain-generalized SM approach

1. Hierarchical Visual Transformation: Diversify the distribution of training domain from three complementary 
perspectives: Global, Local, and Pixel.
2.  Learning Objectives: 

• Maximizing Cross-Domain Visual Discrepancy:

• Minimizing Cross-Domain Feature Inconsistency:



Performance comparison with SOTA 
domain generalized SM networks

• The synthetic-to-realistic generalization performances of all the baselines are consistently improved by our HVT in all settings.

• The improvements of generalization performance brought by HVT on the Middlebury and ETH3D datasets seem to be much 
larger that those on the KITTI 2012 and 2015 datasets.

• Our HVT-enhanced methods almost outperform all the SOTA methods except ITSA-CFNet on KITTI 2015.



Robustness to Complex Realistic Scenarios

Robustness comparison of different methods on the 
DrivingStereo [3] dataset collected from complex realistic 
scenarios: Sunny, Cloudy, Rainy, and Foggy. Qualitative results on the DrivingStereo [3] dataset.

[3] Guorun Yang. Drivingstereo: A large-scale dataset for stereo matching in autonomous driving scenarios. CVPR2019

Our methods  obtain the best overall performance (5.4% and 5.3%) w.r.t. the average D1 error rate over the four groups of weather 
conditions, which demonstrates the efficacy of HVT and the strong robustness of HVT-based methods.



Learning Domain-Invariant features

Histograms of feature cosine similarity scores respectively on DN-PSMNet model (see second row) and HVT-PSMNet model 
(see third row) between original feature and original, global transformed, local transformed and pixel transformed features.
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