

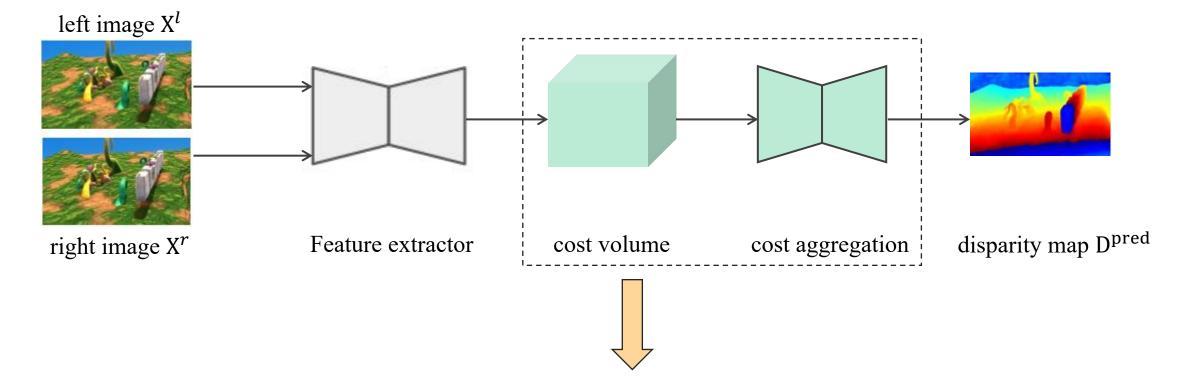
Domain Generalized Stereo Matching via Hierarchical Visual Transformation

Tianyu Chang^{1,3}, Xun Yang^{1*}, Tianzhu Zhang¹, Meng Wang² ¹University of Science and Technology of China ³Institute of Artificial Intelligence, Hefei Comprehensive National Science Center cty8998@mail.ustc.edu.cn {xyang21, tzzhang}@ustc.edu.cn wangmeng@hfut.edu.cn

June 2023

Stereo Matching (SM)

Goal: Generate a disparity map D^{pred} of the left image : SM Network $F_{\Phi}(X^l, X^r) \rightarrow D^{pred}$

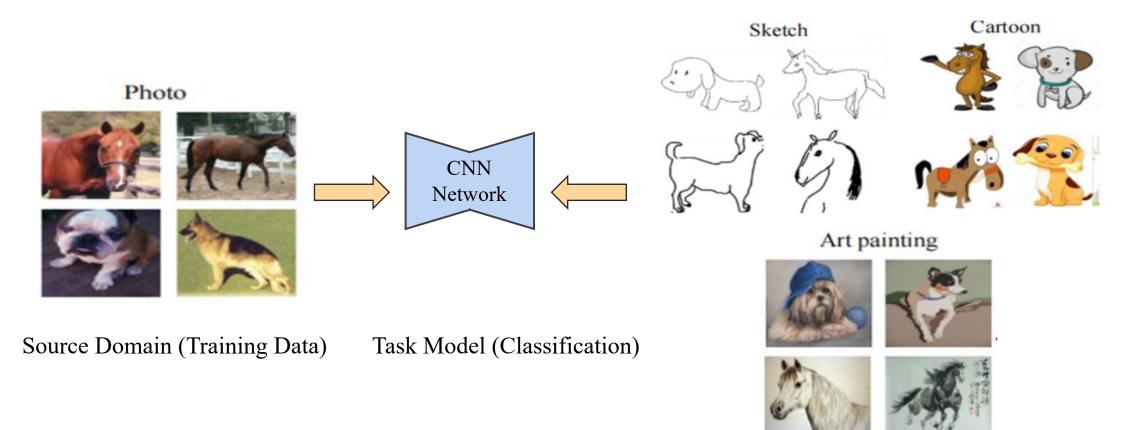


Existing Regular Stereo Matching Methods: Main Improvement Module

Problem: Poor Generalizability of Synthetic-to-realistic Domain

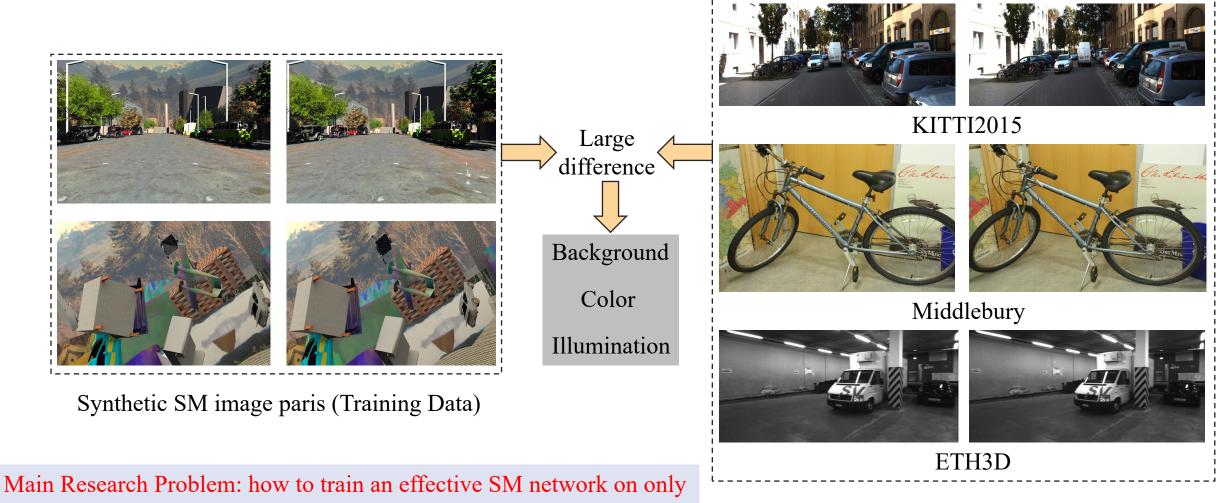
Domain Generalization

Goal: Train a task model that generalizes well on the unseen target domain data with only source domain training dataset



Target Domain (Testing Data)

Domain Generalized Stereo Matching



synthetic data to estimate reliable disparity map on unseen domain.

Realistic SM image paris (Testing Data)

Motivation

Key for Domain Generalization

Learn domain-invariant feature (causal feature)

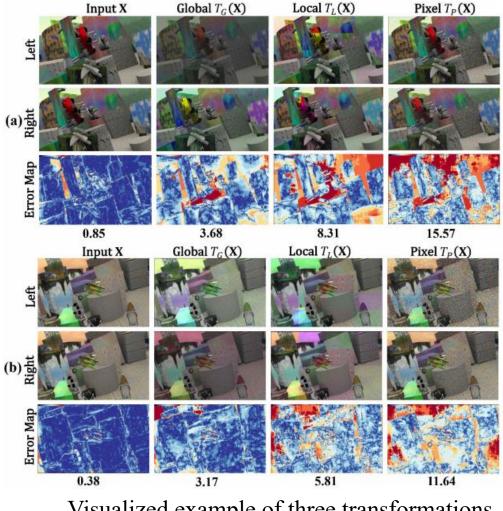
Causal feature is invariant to certain transformations[1]

Problem of Existing SM Networks •

Exploiting common artifacts (e.g. consistent local RGB color statistics and overreliance on local chromaticity features) of synthetic stereo images as shortcuts[2].

Intuitive Idea •

> Leverage the visual transformations that do not change the underlying domain-invariant feature to increase the diversity of training domain, thereby enhancing the generalization performance of SM network

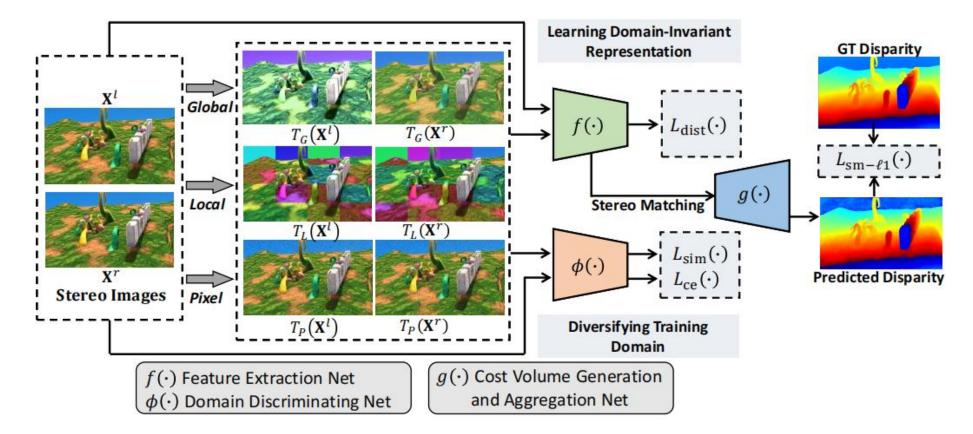


Visualized example of three transformations

[1] Ruoyu Wang. Out-of-distribution generalization with causal invariant transformations. CVPR2022

[2] WeiQin Chuah. Itsa: An information-theoretic approach to automatic shortcut avoidance and domain generalization in stereo matching networks. CVPR2022

The pipeline of our domain-generalized SM approach



1. **Hierarchical Visual Transformation**: Diversify the distribution of training domain from three complementary perspectives: Global, Local, and Pixel.

- 2. Learning Objectives:
 - Maximizing Cross-Domain Visual Discrepancy: $\min L_{sim}(\mathbf{X}) = \frac{1}{3} \sum \cos(\phi(T_J(\mathbf{X})), \phi(\mathbf{X})), \min L_{ce}(\mathbf{X}) = CE(\{\phi(T_J(\mathbf{X})), \phi(\mathbf{X})\}, \mathcal{Y}_d)$
 - Minimizing Cross-Domain Feature Inconsistency: $\min L_{\text{dist}}(\mathbf{X}) = \frac{1}{3} \sum \|f(T_J(\mathbf{X})) f(\mathbf{X})\|_2$

Performance comparison with SOTA domain generalized SM networks

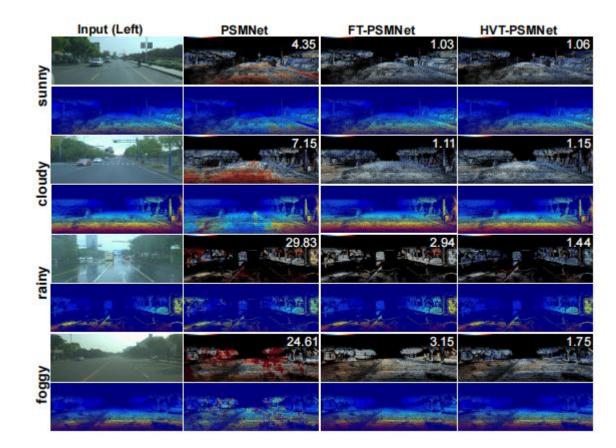
Baselines	Methods	KITTI 2015		KITTI 2012		Middlebury(H)		ETH3D		References
		EPE	D1(3px)	EPE	D1(3px)	EPE	D1(2px)	EPE	D1(1px)	References
	GANet [42]	2.31	11.7	1.93	10.1	5.41	20.3	1.33	14.1	CVPR 2019
	CasStereo [9]	2.42	11.9	2.12	11.8	3.71	17.2	0.87	7.8	CVPR 2020
	DSMNet [43]	1.46	6.5	1.26	6.2	2.62	13.8	0.69	6.2	ECCV 2020
PSMNet [3]	PSMNet [3]	3.17	16.3	2.69	15.1	7.65	34.2	2.33	23.8	CVPR 2018
	MS-PSMNet [2]	1.64*	7.8	2.33*	14.0	4.72*	19.8	1.42*	16.8	3DV 2020
	FC-PSMNet [46]	1.58*	7.5	1.42*	7.0	4.14*	18.3	1.25*	12.8	CVPR 2022
	ITSA-PSMNet [5]	1.39*	5.8	1.09*	5.2	3.25*	12.7	0.94*	9.8	CVPR 2022
	Graft-PSMNet [17]	1.32	5.3	1.09	5.0	2.34	10.9	1.16	10.7	CVPR 2022
	HVT-PSMNet	1.14 ± 0.02	4.9±0.12	0.93±0.02	4.3±0.06	1.46±0.13	10.2 ± 0.16	0.47±0.03	6.9±0.23	Ours
GwcNet [10]	GwcNet [10]	3.43	22.7	2.77	20.2	7.23	37.9	2.78	54.2	CVPR 2019
	FC-GwcNet [46]	1.72*	8.0	1.45*	7.4	5.14*	21.1	1.13*	11.7	CVPR 2022
	ITSA-GwcNet [5]	1.33*	5.4	1.02*	4.9	2.73*	11.4	0.62*	7.1	CVPR 2022
	HVT-GwcNet	1.15 ± 0.02	5.0±0.11	0.88±0.02	$3.9{\pm}0.13$	1.29±0.13	10.3 ± 0.21	0.46±0.08	5.9 ± 0.26	Ours
CFNet [25]	CFNet [25]	1.71	6.0	1.04	5.2	3.24	15.4	0.48	5.72	CVPR 2021
	ITSA-CFNet [5]	1.09	4.7	0.87	4.2	1.87	10.4	0.45	5.1	CVPR 2022
	HVT-CFNet	1.10 ± 0.04	$4.9{\pm}0.16$	0.85±0.02	4.0±0.14	1.79±0.22	10.2 ± 0.16	$0.39{\pm}0.02$	4.5±0.24	Ours
RAFT [16]	RAFT [16]	1.26	5.7	1.01	5.1	1.92	12.6	0.36	3.3	3DV 2021
	HVT-RAFT	1.12 ± 0.02	5.2±0.09	$0.87{\pm}0.02$	$3.7{\pm}0.08$	1.37 ± 0.11	$10.4{\pm}0.14$	$0.29{\pm}0.01$	$3.0{\pm}0.09$	Ours

- The synthetic-to-realistic generalization performances of all the baselines are consistently improved by our HVT in all settings.
- The improvements of generalization performance brought by HVT on the Middlebury and ETH3D datasets seem to be much larger that those on the KITTI 2012 and 2015 datasets.
- Our HVT-enhanced methods almost outperform all the SOTA methods except ITSA-CFNet on KITTI 2015.

Robustness to Complex Realistic Scenarios

Methods	Sunny	Cloudy	Rainy	Foggy	Avg. 63.9	
PSMNet [3]	62.5	60.1	60.5	68.6		
FT-PSMNet [5]	4.0	2.9	11.5	6.5	6.3	
FC-PSMNet [46]	4.9	4.3	7.2	6.2	5.7	
ITSA-PSMNet [5]	4.8	3.2	9.4	6.3	5.9	
HVT-PSMNet	4.2	3.1	8.7	5.6	5.4	
GwcNet [10]	18.1	24.7	28.2	28.3	24.8	
FT-GwcNet [5]	3.1	2.5	12.3	6.0	6.0	
ITSA-GwcNet [5]	4.4	3.3	9.8	5.9	5.9	
HVT-GwcNet	3.4	3.5	8.6	5.6	5.3	

Robustness comparison of different methods on the DrivingStereo [3] dataset collected from complex realistic scenarios: Sunny, Cloudy, Rainy, and Foggy.

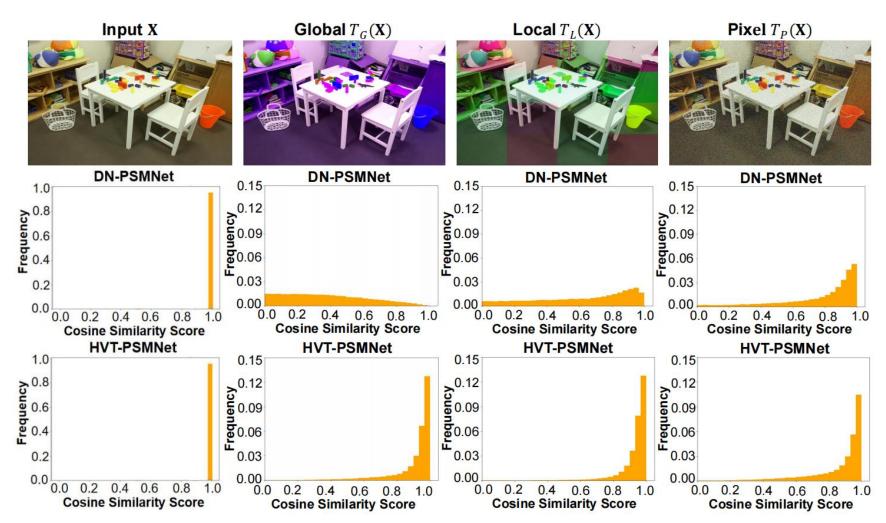


Qualitative results on the DrivingStereo [3] dataset.

Our methods obtain the best overall performance (5.4% and 5.3%) w.r.t. the average D1 error rate over the four groups of weather conditions, which demonstrates the efficacy of HVT and the strong robustness of HVT-based methods.

[3] Guorun Yang. Drivingstereo: A large-scale dataset for stereo matching in autonomous driving scenarios. CVPR2019

Learning Domain-Invariant features



Histograms of feature cosine similarity scores respectively on DN-PSMNet model (see second row) and HVT-PSMNet model (see third row) between original feature and original, global transformed, local transformed and pixel transformed features.

Thank you for your careful listening