ProphNet: Efficient Agent-Centric Motion Forecasting with Anchor-informed Proposals

Xishun Wang, Tong Su, Fang Da, Xiaodong Yang

QCraft

Introduction

- Motion forecasting in autonomous driving is challenging due to heterogenous nature of multi-sourced input, multimodality in agent behavior, and low inference latency required onboard deployment to predict dozens of agents.
- ProphNet involves (i) uniform encoding of heterogeneous input to construct a unified feature representation space agent-centric scene representation (AcSR), (ii) generating proposals and anchors to form anchor-informed proposals (AiP), and (iii) feeding AiP into hydra prediction heads to produce the multimodal output trajectories
- We hope this work would encourage more research toward practical model designs considered for the real-world driving deployment, with not only high prediction accuracy but also succinct architecture and efficient inference.

A schematic overview of ProphNet. We uniformly encode the heterogeneous input by gMLP, and combine the compact encoding features to form a unified representation space AcSR. We generate proposals through cross-attention between learnable queries and full history encoding. Anchors are learned based on self-attention of AcSR. We introduce AiP by integrating proposals and anchors, and randomly select subsets from AiP to feed into hydra prediction heads to output the final prediction. We use the solid and dashed boxes to indicate operators and operands in the network, respectively.

Initialize queries orthogonally

Comparison between random and orthogonal initializations

Trajectories predicted by proposals only vs. trajectories predicted by AiP

Visualization of learned anchors

Visualization of hydra-head prediction and ensemble effect

Argoverse-1

Method	$minADE_6$	$minFDE_6$	$minADE_1$	$minFDE_1$	MR	brier-minFDE
LaneRCNN [28]	0.9038	1.4526	1.6852	3.6916	0.1232	2.1470
LaneGCN [9]	0.8703	1.3622	1.7019	3.7624	0.1620	2.0539
mmTransformer [12]	0.8436	1.3383	1.7737	4.0033	0.1540	2.0328
TPCN [26]	0.8153	1.2442	1.5752	3.4872	0.1333	1.9286
SceneTransformer [16]	0.8026	1.2321	1.8108	4.0551	0.1255	1.8868
TNT [30]	0.9097	1.4457	2.1740	4.9593	0.1656	2.1401
DenseTNT [7]	0.8817	1.2815	1.6791	3.6321	0.1258	1.9759
MultiPath++ [21]	0.7897	1.2144	1.6235	3.6141	0.1324	1.7932
Wayformer [15]	0.7676	1.1616	1.6360	3.6559	0.1186	1.7408
ProphNet	0.7726	1.1442	1.5240	3.3341	0.1121	1.7323

Argoverse-2

Method	minADE ₆	$minFDE_6$	$minADE_1$	$minFDE_1$	MR	brier-minFDE
GOHOME [6]	0.88	1.51	1.95	4.71	0.20	2.16
GoRela [3]	0.76	1.48	1.82	4.62	0.22	2.01
TENET [24]	0.70	1.38	1.84	4.69	0.19	1.90
ProphNet	0.68	1.33	1.80	4.74	0.18	1.88

Comparison on inference latency

Method	Latency (ms)	GFLOPs
VectorNet [5]	10.9	0.01
LaneGCN [9]	63.4	0.13
mmTransformer [12]	14.2	0.01
DenseTNT [7]	490.1	0.62
MultiPath++ [21]	240.4	2.19
Wayformer [15]	102.3	2.13
ProphNet-S	27.4	0.39
ProphNet	28.0	0.40

Ablation

Model	$minADE_1$	$minFDE_1$
(a) Compact History Encoding	3.31	9.15
(b) Proposals	3.27	9.06
(c) Hierarchical Encoding	2.04	5.81
(d) AcSR	2.02	5.62
(e) AcSR with Anchors	2.01	5.47
(f) ProphNet-S	1.98	5.37
(g) ProphNet	1.97	5.33

Visualization of learned attention distribution

Visualization in challenging scenarios

Thanks for watching!