Meta Architecture for Point Cloud Analysis

Haojia Lin¹, Xiawu Zheng², Lijiang Li¹, Fei Chao¹, Shanshan Wang², Yan Wang³, Yonghong Tian², Rongrong Ji*^{1,2}

¹Media Analytics and Computing Lab, Department of Artificial Intelligence, School of Informatics,

Xiamen University, China. ²Peng Cheng Laboratory. ³Samsara Inc.

Contact: rrji@xmu.edu.cn

THU-AM-115

Point Cloud

- Sparse
- Unordered
- Irregular

Existing Methods

- PointNet (2017)
- PointNet++ (2017)
- DGCNN (2018)
- PointCNN (2018)
- Point Transformer (2021)
- ASSANet (2021)
- PointNeXt (2022)

PointMeta: Meta Architecture for Point Cloud Analysis

- 4 Meta Functions
 - Neighbor Aggregation
 - Neighbor Aggregation
 - Point Update
 - Position Embedding

$$\boldsymbol{f}_{\mathcal{N}(i)} = \phi^n \circ \phi^e(f_i, p_i), \tag{1}$$

$$f_i^{(1)} = \phi^a \circ \phi^e(f_i, p_i, \boldsymbol{f}_{\mathcal{N}(i)}, \boldsymbol{p}_{\mathcal{N}(i)})$$
(2)

$$f_i^{(2)} = \phi^p(f_i^{(1)}, p_i), \tag{3}$$

PointMeta

PointMeta and its instantiation examples

Empirical Study

- Best Practice
 - Position Embedding
 - Neighbor Aggregation
 - Complexity Allocation

Variant	mIoU		Params	FLOPs	
variant	(%)		(M)	(G)	
Plain-Max	47.3±0	.7	2.0	1.4	
Plain-PP	65.1±0	.2	2.0	1.5	
Plain-PP-Max	58.4±0	.6	2.0	1.5	
Plain-IPE-Max	68.0±0	.3	2.0	13.8	
Plain-EPE-Max	69.0±0	.3	2.0	1.8	
Plain-EPE-PP	65.4±0	.1	2.0	1.8	
S					
Varianta		mIoU		Params	FLOPs
variants		(%)		(M)	(G)
Point Trans [36]		70.5±0.3		7.8	5.6
Point Trans (-VSA+Max)		70.3±0.2		5.1	3.3

Varianta	mIoU	Params	FLOPs
variants	(%)	(M)	(G)
N1P1	69.0±0.3	2.0	1.7
N2P0	68.7±0.3	2.0	1.7
N0P2	67.8±0.4	2.0	1.7
N1P2	69.5±0.3	2.7	2.0
N1P2-Inv	69.7±0.3	7.1	3.8
N2P1	69.4±0.3	2.7	2.0
N2P1-Inv	69.6±0.4	7.1	3.8
N1P3	69.5±0.3	3.4	2.3
N3P1	69.6±0.5	3.4	2.3

Evaluation

Conclusion

- In the dimension of models, it allows us to compare and contrast different models in a fair manner.
- In the dimension of components, it allows us to have a higher level view across components.
- Based on the learnings from the previous two dimensions, we are then able to do simple tweaks on the building blocks to apply the best practices.

Thanks!

