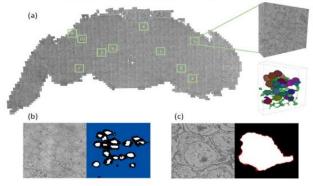


A Soma Segmentation Benchmark in Full Adult Fly Brain

Xiaoyu Liu¹ Bo Hu¹ Mingxing Li¹ Wei Huang¹ Yueyi Zhang^{1,2} Zhiwei Xiong^{1,2,*} ¹University of Science and Technology of China ²Institute of Artificial Intelligence, Hefei Comprehensive National Science Center {liuxyu, hubosist, mxli, weih527}@mail.ustc.edu.cn, {zhyuey, zwxiong}@ustc.edu.cn



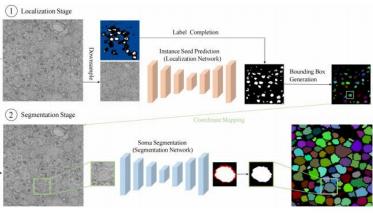
National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application

Introduction

EM adult drosophila soma (EMADS) dataset

- > Ten EM blocks from the FAFB full brain dataset.
- > 204 somas with different sizes and morphologies.
- > 8×10^9 annotated voxels.

Contribution

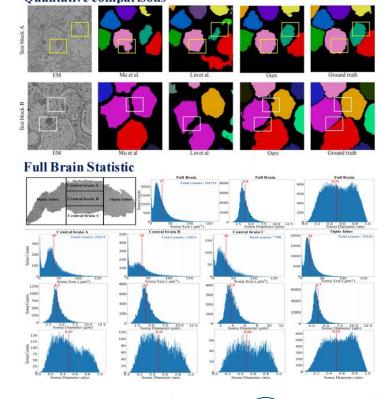

- We mask a high-resolution EM soma dataset with finegrained 3D manual annotations.
- We propose an efficient, two-stage deep learning algorithm for soma instance segmentation.
- We deploy a parallelized, high-throughput data processing pipeline for executing our algorithm on the full brain, on a 90-GPU cluster within 4 days.
- We provide quantitative and qualitative results for evaluating the accuracy and efficiency of the proposed method, along with preliminary statistics of the reconstructed somas.

Method

Existing Methods

- Recent works of neuron reconstruction in EM images are generally time-consuming when dealing with extremely large-scale EM data.
- 2D nuclei segmentation lacks the utilization of 3D structural information and is difficult to apply to densely distributed somas with complex shapes.

Overall Pipeline

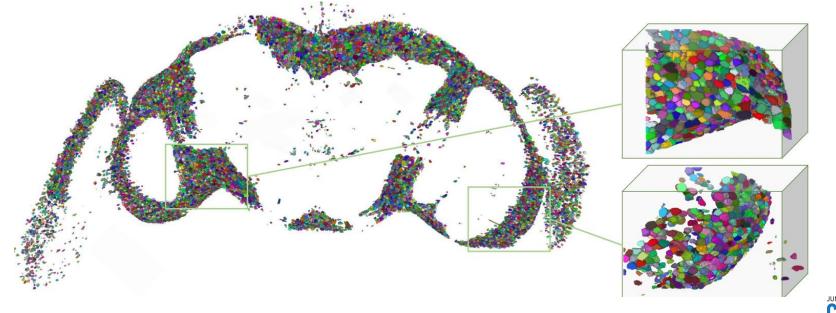

- The localization stage aims to localize somas by predicting instance seeds and generating bounding boxes for them in a given EM block.
- The segmentation stage aims to segment somas from the predicted bounding boxes

Evaluation

Quantitative comparisons

Method	Test block A			Test block B			Average				
	mAP	mAP ₅₀	Jacc.	mAP	mAP ₅₀	Jacc.	mAP	mAP ₅₀	Jacc.	time	
Mu et al.	0.045	0.212	0.579	0.072	0.219	0.578	0.059	0.216	0.579	63s	
Lin et al.	0.017	0.096	0.420	0.020	0.093	0.397	0.019	0.095	0.409	32s	
Baseline 1	0.213	0.699	0.587	0.179	0.680	0.524	0.196	0.690	0.556	960s	
Baseline 2	0.226	0.695	0.592	0.242	0.709	0.558	0.234	0.702	0.575	1142	
Ours-UNet	0.301	0.713	0.638	0.302	0.721	0.590	0.301	0.717	0.614	178s	
Ours-Swin	0.420	0.853	0.650	0.303	0.614	0.474	0.362	0.734	0.562	158s	

Qualitative comparisons

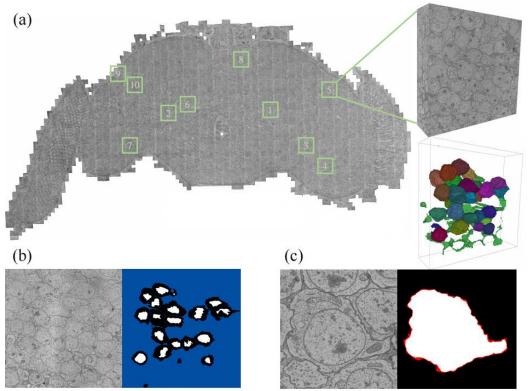


JUNE 18-22, 2023

Introduction

Soma Reconstruction

- Great biological significance to investigate soma reconstruction in the full brain of model organisms such as drosophila.
- Full adult fly brain (FAFB) dataset imaged from a complete drosophila brain can be regarded as a representative. Due to the lack of high-resolution EM datasets specifically annotated for somas, existing works cannot directly provide accurate soma distribution and morphology information.

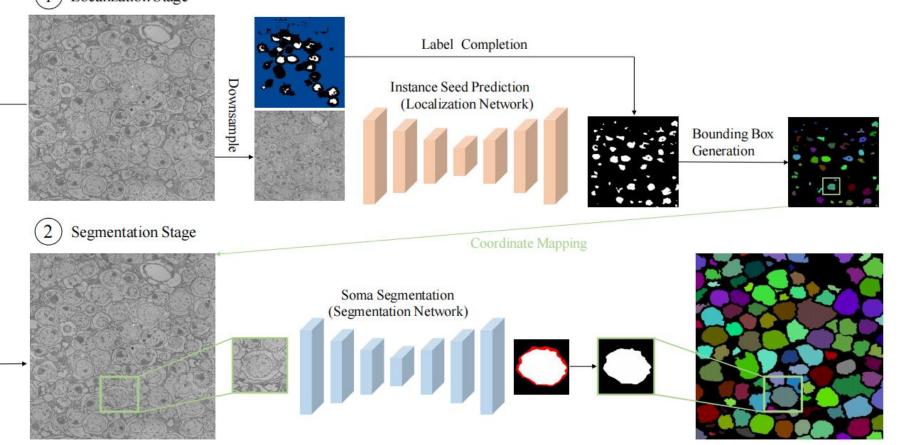


Soma Reconstruction

≻ Ten EM blocks from the FAFB full brain dataset.

>204 somas with different sizes and morphologies.

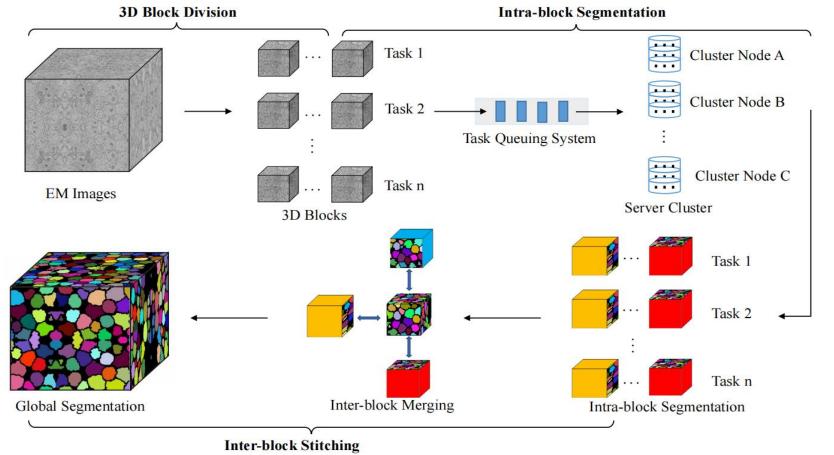
 $> 8 \times 10^9$ annotated voxels.



Method

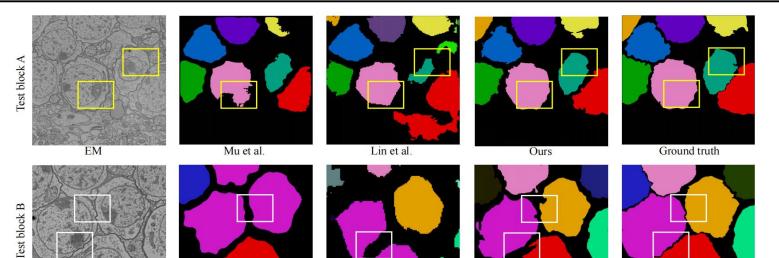
Workflow of our method

(1) Localization Stage



111

Parallelized Large-scale Data Processing


Experiments

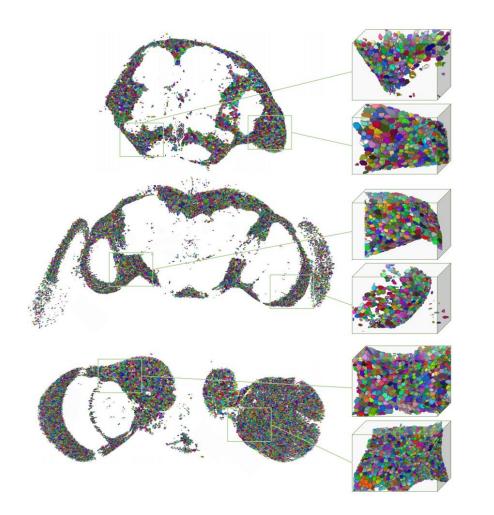
EM

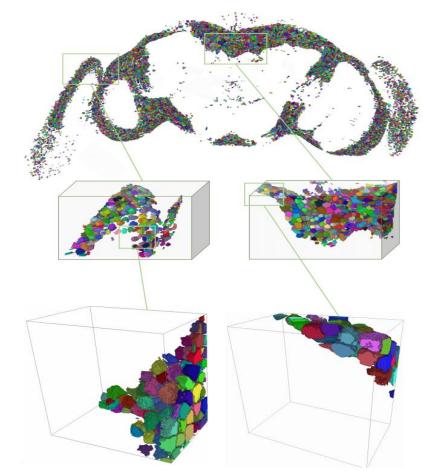
Mu et al.

Quantitative and qualitative evaluation for our methods

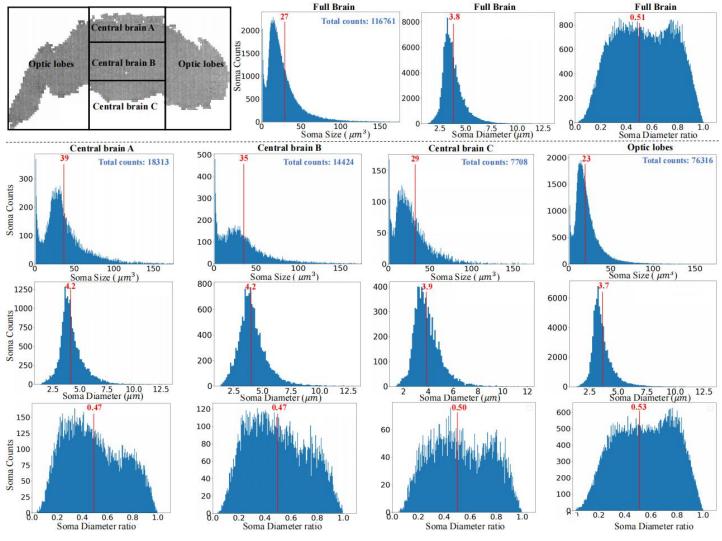
Method	Test block A			Test block B			Average			
	mAP	mAP ₅₀	Jacc.	mAP	mAP ₅₀	Jacc.	mAP	mAP ₅₀	Jacc.	time
Mu et al.	0.045	0.212	0.579	0.072	0.219	0.578	0.059	0.216	0.579	63s
Lin et al.	0.017	0.096	0.420	0.020	0.093	0.397	0.019	0.095	0.409	32s
Baseline 1	0.213	0.699	0.587	0.179	0.680	0.524	0.196	0.690	0.556	960s
Baseline 2	0.226	0.695	0.592	0.242	0.709	0.558	0.234	0.702	0.575	1142s
Ours-UNet	0.301	0.713	0.638	0.302	0.721	0.590	0.301	0.717	0.614	178s
Ours-Swin	0.420	0.853	0.650	0.303	0.614	0.474	0.362	0.734	0.562	158s

Lin et al


Ours

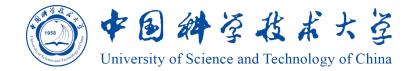

Ground truth

Full Brain Visualization



Full Brain Statistic

We make a high-resolution EM soma dataset with fine-grained 3D manual annotations.


> We propose an efficient, two-stage deep learning algorithm for soma instance segmentation.

➤ We deploy a parallelized, high-throughput data processing pipeline for executing our algorithm on the full brain, on a 90-GPU cluster within 4 days.

➤ We provide quantitative and qualitative results for evaluating the accuracy and efficiency of the proposed method, along with preliminary statistics of the reconstructed somas.

Thanks for your listening!

National Engineering Laboratory for Brain-Inspired Intelligence Technology and Application