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Class-Incremental Continual Learning
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Class-Incremental Continual Learning
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BFP: Backward Feature Projection
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Features space Ƹ𝑧 (t-SNE) 
after training on task 1

Continual Learning

Backward Feature Projection Loss
𝐿𝐵𝐹𝑃(𝐴, 𝑧) = 𝐴𝑧 − 𝑧′ 2
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BFP brings significant performance boosts
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[1] Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." NeurIPS 2020



How does feature space evolve in CL?

• After training on task 1
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How does feature space evolve in CL?

• After training on task 1
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How does feature space evolve in CL?

• Before training on task 2
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How does feature space evolve in CL?

• After training on task 2, ideally
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Learning new features results in a linear 
feature projection backward in time
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In case of feature forgetting…
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Backward Feature Projection
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Features space Ƹ𝑧 (t-SNE) 
after training on task 1

Continual Learning

Backward Feature Projection Loss
𝐿𝐵𝐹𝑃(𝐴, 𝑧) = 𝐴𝑧 − 𝑧′ 2
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Backward Feature Projection

• Old feature extractor 𝑓′: 𝑥 → 𝑧′ ∈ ℝ𝑑

• New feature extractor: 𝑓: 𝑥 → 𝑧 ∈ ℝ𝑑

• Learnable linear projection matrix 𝐴 ∈ ℝ𝑑×𝑑

• Baseline: Feature Distillation
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𝐿𝐵𝐹𝑃 =

𝑥

𝑓′(𝑥) − 𝐴𝑓(𝑥) 2

𝐿𝐹𝐷 =

𝑥

𝑓′(𝑥) − 𝑓(𝑥) 2



BFP Combined with Experience Replay
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[1] Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." NeurIPS 2020



BFP Combined with Experience Replay
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Cross-entropy and 
logits regularization [1]

BFP

Random init 𝐴

Gradient Descent

[1] Buzzega, Pietro, et al. "Dark experience for general continual learning: a strong, simple baseline." NeurIPS 2020



Datasets

• Class-incremental learning datasets
• Split-CIFAR10

• 5 tasks, 2 classes per task

• Split-CIFAR100
• 10 tasks, 10 classes per task

• Split-TinyImageNet
• 10 tasks, 20 classes per task

• Metrics
• Final class-IL accuracy

• Final forgetting (refer to the paper)
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BFP improves performance by a large margin
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Ablation study with Feature Distillation
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38.88

52.74

43.81

56.56

47.45

57.27
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Results are averaged over 5 runs, with standard deviation in parentheses. 

41.24
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BFP results in linearly separable features
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Features space Ƹ𝑧 (t-SNE) 
after training on task 1

Continual Learning

Backward Feature Projection Loss
𝐿𝐵𝐹𝑃(𝐴, 𝑧) = 𝐴𝑧 − 𝑧′ 2
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Linear Probing

• After continual learning on all tasks … 
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Linear Probing

• After continual learning on all tasks … 
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BFP results in a linearly separable feature 
space and higher linear probing accuracies
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Based on DER++, with memory buffer 
and replay

Based on Finetune (FT) baseline, 
where no replay is applied. 



BFP results in a linearly separable feature 
space and higher linear probing accuracies
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Based on Finetune (FT) baseline, 
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Conclusion

• We proposed Backward Feature Projection, a simple yet strong method to reduce forgetting in 
continual learning. 

• We showed that BFP can reduce feature forgetting by learning a more linearly separable feature 
space. 

• Experiments showed that BFP can boost CL performance by a significant margin, achieving state-
of-the-art results. 
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