Preserving Linear Separability in Continual Learning by Backward Feature Projection

Qiao Gu University of Toronto

Dongsub Shim LG AI Research

Florian Shkurti University of Toronto

CVPR 2023 THU-PM-352

Robot Vision & Learning

Task 3

Task 3

BFP: Backward Feature Projection

BFP brings significant performance boosts

• After training on task 1

• After training on task 1

• After training on task 1

Features z

• Before training on task 2

• After training on task 2, ideally

Learning new features results in a linear feature projection backward in time

In case of feature forgetting...

Backward Feature Projection

Backward Feature Projection

- Old feature extractor $f': x \to z' \in \mathbb{R}^d$
- New feature extractor: $f: x \to z \in \mathbb{R}^d$
- Learnable linear projection matrix $A \in \mathbb{R}^{d \times d}$

$$L_{BFP} = \sum_{x} \|f'(x) - Af(x)\|_{2}$$

• Baseline: Feature Distillation

$$L_{FD} = \sum_{x} \|f'(x) - f(x)\|_{2}$$

BFP Combined with Experience Replay

BFP Combined with Experience Replay

Datasets

- Class-incremental learning datasets
 - Split-CIFAR10
 - 5 tasks, 2 classes per task
 - Split-CIFAR100
 - 10 tasks, 10 classes per task
 - Split-TinyImageNet
 - 10 tasks, 20 classes per task
- Metrics
 - Final class-IL accuracy
 - Final forgetting (refer to the paper)

BFP improves performance by a large margin

Method	S-CIFAR10		S-CIFAR100		S-TinyImageNet
Buffer Size	200	500	500	2000	4000
Joint Training (JT)	91.27±0.57		70.68±0.57		59.61±0.25
Finetuning (FT)	36.20±2.02		9.36±0.07		8.11±0.08
iCaRL [41]	63.58±1.22	62.62±2.07	46.66±0.23	52.60±0.38	31.47±0.46
FDR [5]	31.24±2.61	28.72±2.86	22.64±0.56	34.84±1.03	26.52±0.41
LUCIR [23]	58.53±3.03	70.37±0.97	35.14±0.57	48.95±1.21	29.79±0.70
BiC [50]	59.53±1.77	75.41±1.14	35.96±1.38	45.44±0.96	15.98±1.01
ER-ACE [10]	63.54±0.42	71.17±1.38	38.86±0.72	50.20±0.39	37.72±0.16
ER [42]	58.07±2.92	68.04±2.18	20.34±0.96	37.44±1.48	23.29±0.54
ER w/ BFP (Ours)	63.27±1.09 (+5.21)	71.51±1.58 (+3.47)	22.54±1.10 (+2.20)	38.92±1.94 (+1.48)	26.33±0.68 (+3.04)
DER++ [8]	65.41±1.60	72.65±0.33	38.88±0.91	52.74±0.79	41.24±0.64
DER++ w/ BFP (Ours)	72.21±0.22 (+6.80)	76.02±0.79 (+3.37)	47.45±1.30 (+8.56)	57.91±0.66 (+5.17)	43.40±0.41 (+2.16)

Ablation study with Feature Distillation

Results are averaged over 5 runs, with standard deviation in parentheses.

BFP results in linearly separable features

Linear Probing

• After continual learning on all tasks ...

Linear Probing

• After continual learning on all tasks ...

BFP results in a linearly separable feature space and higher linear probing accuracies

28

BFP results in a linearly separable feature space and higher linear probing accuracies

Conclusion

- We proposed Backward Feature Projection, a simple yet strong method to reduce forgetting in continual learning.
- We showed that BFP can reduce feature forgetting by learning a more linearly separable feature space.
- Experiments showed that BFP can boost CL performance by a significant margin, achieving stateof-the-art results.

