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Motivation

What features do CNNs learn from images?
• Texture
• Color
• Shape silhouette/edges

For 3D point clouds:
• Usually no texture information due to sparsity
• Color information sometimes is also not available
• Shape silhouette/edges are of crucial importance

[1] Geirhos, Robert et al. “ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness.” ICLR (2019).
[2] Engel, Nico et al. “Point Transformer.” IEEE Access 9 (2020): 134826-134840.

For CV tasks, when sampling point clouds, would sampling edge points be a better choice?



Motivation

Mathematical statistics-based methods:
• Random Sampling
• Voxel-based grid sampling
• Farthest Point Sampling (FPS)
• Inverse Density Importance Sampling (IDIS)
• ...

Neural network learning-based methods:
• S-Net
• SampleNet
• DA-Net
• MOPS-Net
• LighTN
• ...

Direct point selecting Task-oriented Generating new points

[3] Lang, Itai et al. “SampleNet: Differentiable Point Cloud Sampling.” CVPR (2019): 7575-7585.

Current point cloud sampling methods



Revisiting Canny Edge Detection on Images

𝒑! :	feature of center pixel
𝒑!" :	feature of one neighbor pixel
ℎ(𝒑! , 𝒑!") : measure of feature correlation

Pixels with larger intensity gradients are defined as edge pixels

Larger differences between the pixels from a local patch set 𝑆!

The standard deviation 𝜎! of the intensities in the patch is larger

Compute normalized correlation map:
𝒎! = softmax ℎ 𝒑! , 𝒑!" 𝑗 ∈ 𝑆!

Compute 𝜎! over the elements of 𝒎!

Pixels with larger 𝜎! are selected as edge pixels

[4] Canny, John F.. “A Computational Approach to Edge Detection.” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8 (1986): 679-698.



Local-based Attention-Based Point Cloud Edge Sampling (APES)

Key idea: Use the local patch attention map 
as the normalized correlation map 

Correlation measure: ℎ𝑙 𝒑! , 𝒑!" = 𝑄 𝒑! ⏉ 𝐾(𝒑!" − 𝒑!)

Correlation map: 𝒎! 𝑙 = softmax ℎ𝑙 𝒑! , 𝒑!" 𝑗 ∈ 𝑆!
/ 𝑑

Compute 𝜎! over the elements of 𝒎! 𝑙

Points with larger 𝜎! are selected as edge points



Global-based APES

Key idea: (i) Use the global attention map 
as the normalized correlation map 

(ii) Instead of computing row-wise standard 
deviations, compute column-wise sums

Correlation measure: ℎ𝑔 𝒑! , 𝒑" = 𝑄 𝒑! ⏉ 𝐾(𝒑")

Local correlation map: 𝒎!
𝑔 = softmax ℎ𝑔 𝒑! , 𝒑" 𝑗 ∈ 𝑆 / 𝑑

Compute column-wise sums  𝑢! of 𝑀𝑔

Points with larger 𝑢! are selected as edge points

Global correlation map: 𝑀𝑔 =
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Network Architecture



Network Architecture



Experiments - Classification

Benchmark: ModelNet40



Experiments - Classification

Benchmark: ModelNet40

Local-based APES Global-based APES



Experiments - Segmentation

Benchmark: ShapeNet Part

The performances on intermediate 
downsampled point clouds are better!



Ablation study

𝑘: number of neighbors used in local-based APES



Sampling Methods Comparison

Benchmark: 
ModelNet40 classification,

with simple PointNet
on sampled sub-point cloud



Conclusion

• We propose an attention-based point cloud edge sampling (APES) method, which uses the attention 
mechanism to compute correlation maps and sample edge points accordingly. 

• Two variations of local-based APES and global-based APES are proposed based on two different 
attention modes. 

• Qualitative and quantitative results show that our method successfully extracts edge points and 
achieves excellent performance on common point cloud benchmark tasks.

Future Work:

• Design other supplementary losses for the training.
• Propose a better upsampling method that can better cope with edge point sampling.
• ...



Thanks for watching!


