

Attention-Based Point Cloud Edge Sampling

Chengzhi Wu¹, Junwei Zheng¹, Julius Pfrommer^{2,3}, and Jürgen Beyerer^{1,2,3}

¹Karlsruhe Institute of Technology, Germany ²Fraunhofer IOSB, Germany ³Fraunhofer Center for Machine Learning, Germany

CVPR2023 Highlight Paper tag: TUE-PM-114

Motivation

original

greyscale

texture

Shape silhouette/edges ٠

For 3D point clouds:

- Usually no texture information due to sparsity
- Color information sometimes is also not available
- Shape silhouette/edges are of crucial importance

For CV tasks, when sampling point clouds, would sampling edge points be a better choice?

[1] Geirhos, Robert et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." ICLR (2019). [2] Engel, Nico et al. "Point Transformer." IEEE Access 9 (2020): 134826-134840.

...

Current point cloud sampling methods

Mathematical statistics-based methods:

- Random Sampling
- Voxel-based grid sampling
- Farthest Point Sampling (FPS)
- Inverse Density Importance Sampling (IDIS)

Neural network learning-based methods:

- S-Net
- SampleNet
- DA-Net
- MOPS-Net
- LighTN

Revisiting Canny Edge Detection on Images

 $\sigma_A > \sigma_B$

Edge Pixel A

Α

Correlation Map ($\sigma_A = 0.057$)

0.15 0.15 0.15 0.15 0.15 0.15 0.03 0.03 0.03

Non-Edge Pixel B

B

Correlation Map ($\sigma_B = 0.010$)

 p_i : feature of center pixel p_{ij} : feature of one neighbor pixel $h(p_i, p_{ij})$: measure of feature correlation

[4] Canny, John F.. "A Computational Approach to Edge Detection." *IEEE Transactions on Pattern Analysis and Machine Intelligence* PAMI-8 (1986): 679-698.

Local-based Attention-Based Point Cloud Edge Sampling (APES)

Key idea: Use the local patch attention map as the normalized correlation map

Correlation measure: $h^l(p_i, p_{ij}) = Q(p_i)^\top K(p_{ij} - p_i)$ Correlation map: $m_i^l = \operatorname{softmax}(h^l(p_i, p_{ij})_{j \in S_i} / \sqrt{d})$ Compute σ_i over the elements of m_i^l Points with larger σ_i are selected as edge points

Global-based APES

Key idea: (i) Use the global attention map as the normalized correlation map (ii) Instead of computing row-wise standard deviations, compute column-wise sums

Local-based Correlation Map

Points with larger u_i are selected as edge points

Network Architecture

Network Architecture

Experiments - Classification

Benchmark: ModelNet40

Experiments - Classification

Benchmark: ModelNet40

Experiments - Segmentation

The performances on intermediate downsampled point clouds are better!

P	oints (Cat. mIol	J (%)	In	Ins. mIoU (%)			
Method	204	8 1024	512	2048	1024	512		
APES (local)	83.1	1 85.50 7 84.86	5 86.17	85.58 85.81	87.27 87.78	87.41 88.06		

Method	Feature Learning Layer	OA (%)
DGCNN	EdgeConv	92.90
APES (local-based)	EdgeConv P2P Attention N2P Attention	93.02 93.30 93.47
APES (global-based)	EdgeConv P2P Attention N2P Attention	93.18 93.46 93.81

Method	Embedding Dimension	OA (%)
	64	93.10
APES (local-based)	128	93.47
	192	93.54
	64	93.34
APES (global-based)	128	93.81
	192	93.83

k	8	16	32	64	128	256	512
OA (%)	93.14	93.26	93.47	93.52	93.54	93.59	93.63

k: number of neighbors used in local-based APES

Sampling Methods Comparison

Benchmark:	M	Voxel	RS	FPS	S-NET	PST-NET	SampleNet	MOPS-Net	DA-Net	LighTN	APES (local)	APES (global)
ModelNet40 classification	512	73.82	87.52	88.34	87.80	87.94	88.16	86.67	89.01	89.91	90.79	90.81
	256	73.50	77.09	83.64	82.38	83.15	84.27	86.63	86.24	88.21	90.38	90.40
with simple PointNet	128	68.15	56.44	70.34	77.53	80.11	80.75	86.06	85.67	86.26	89.73	89.77
on compled sub point cloud	64	58.31	31.69	46.42	70.45	76.06	79.86	85.25	85.55	86.51	88.68	89.57
on sampled sub-point cloud	32	20.02	16.35	26.58	60.70	63.92	77.31	84.28	85.11	86.18	86.49	88.56

Conclusion

- We propose an attention-based point cloud edge sampling (APES) method, which uses the attention mechanism to compute correlation maps and sample edge points accordingly.
- Two variations of local-based APES and global-based APES are proposed based on two different attention modes.
- Qualitative and quantitative results show that our method successfully extracts edge points and achieves excellent performance on common point cloud benchmark tasks.

Future Work:

- Design other supplementary losses for the training.
- Propose a better upsampling method that can better cope with edge point sampling.

• ...

Thanks for watching!