The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training

Sungdong Kim[†]

Jin-Hwa Kim[†] **CVPR 2023** († equal contribution)

Donghyun Kwak[†]

Byoung-Tak Zhang

What is Visual Dialog?

- Answer a sequence of questions grounded in an image
- Image and dialog history as a context ${\bullet}$

Answer

A: Light tan with white patch that runs up to bottom of his chin

model

Credit: visualdialog.org

What is Visual Dialog?

- Answer a sequence of questions grounded in an image
- Image and dialog history as context

Answer

A: Light tan with white patch that runs up to bottom of his chin

model

Credit: visualdialog.org

Quick Preview

- Semi-supervised learning approach for Visual Dialog
- Generate visually-grounded dialog data for unlabeled Web images
- Leveraging the dialog data improves overall performance, adversarial robustness ...

Unlabeled Images

Artificial Visual Dialog Dataset

Motivation

- learning or leveraged pre-training on related vision-and-language datasets.
- data for training.

Prior work has trained the dialog agents solely on VisDial data via supervised

How can the dialog agent expand its knowledge beyond what it can acquire via supervised learning or self-supervised pre-training on the provided datasets?

We propose a semi-supervised learning approach, called Generative Self-Training (GST), that artificially generates multi-turn visual QA data and utilizes the synthetic

Generative Self-Training (GST)

1. Training Teacher & Questioner

Teacher & Questioner Training

Given VisDial data $L = \{(v_n, d_n)\}_{n=1}^N$ d_n

1 We first train teacher model $P_{\mathcal{T}}$ by minimizing the negative log likelihood of the ground-truth answers $a_{n,t} = (w_1, \cdots, w_S)$

$$\mathcal{L}_{teacher} = -\frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} \log P_{\mathcal{T}}(a_{n,t} | v_n, d_{n,
$$= -\frac{1}{NTS} \sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{S} \log P_{\mathcal{T}}(w_s | v_n, d_{n,$$$$

② Similarly, we train the question generation model P_{Q}

$$I_{n} = \{\underbrace{c_{n}}_{d_{n,0}}, \underbrace{(q_{n,1}, a_{n,1})}_{d_{n,1}}, \cdots, \underbrace{(q_{n,T}, a_{n,T})}_{d_{n,T}}\}$$

Model Architecture of Teacher & Questioner

Figure 3: A detailed architecture of our proposed model. We propose the encoder-decoder model where the encoder aggregates the given multimodal context, and the decoder generates the target sentence. (b): a more detailed view of the encoder. TRM and Co-TRM denote the transformer module and the co-attentional transformer module, respectively. \oplus denotes the concatenation operation.

Unlabeled In-Domain Image Retrieval

Visual Dialog

CC12M

PERSON> was the first US president to attend a tournament in sumo's hallowed Ryogoku Kokugikan arena. (AFP photo)

Hand holding a fresh mangosteen

#jellyfish #blue #ocean #pretty Sea Turtle Wallpaper, Aquarius Aesthetic, Blue Aesthetic Pastel, The Adventure Zone, Capricorn And <PERSON>, Life Aquatic, Ocean Life, Jellyfish, Marine Life

Feature vectors for 120k images

Multivariate Normal Distribution

Feature vectors for 12M images

Visually-Grounded Dialogue Generation

For 3.6M images, 36M QA pairs are generated (1 image + 10 QA pairs) Decoding strategy: Top-k sampling(k=7) with temperature 0.7

- Given unlabeled images and the captions, the questioner and the teacher generate the dialogs

Student Training

(MCR) to effectively train the artificially generated dialog dataset

$$\mathcal{L}_{Student} = -\frac{1}{MT} \sum_{m=1}^{M} \sum_{t=1}^{T} \mathbb{1}(\operatorname{PPL}(\tilde{a}_{m,t}) < \tau) \log \underbrace{P_{\mathcal{S}}(\tilde{a}_{m,t} \mid \mathcal{M}(\tilde{v}_{m}, \tilde{d}_{m,
where $\operatorname{PPL}(\tilde{a}_{t}) = \exp\left\{-\frac{1}{S} \sum_{s=1}^{S} \log P_{\mathcal{T}}(\tilde{w}_{s} \mid \tilde{v}, \tilde{d}_{$$$

We propose perplexity-based data selection (PPL) and multimodal consistency regularization

Artificial Visual Dialog

(Machine VisDial Data) (Human VisDial Data) Caption: ... Caption: ... QA1: ... [MASK] QA1: ... [MASK] QA10: ... QA10: ... Perplexity-based (+)**Data Selection** S $\bigcirc \bigcirc \bigcirc$ Student

Iterative Training

The student model at *i*-th iteration as a teacher model at (i + 1)-th iteration Repeats the third and fourth steps up to 3 times

1. Training Teacher & Questioner

Evaluation Metrics

Mean Reciprocal Rank (MRR) - MRR = $\frac{1}{\Omega}$

Recall@k, k \in {1, 5, 10} - existence of ground truth answer in top-k ranked list

Mean Rank (Mean) - mean rank of the ground truth answer

Normalized Discounted Cumulative Gain (NDCG) - answer relevance

Ground-truth relevances : [0, 1.0, 0.5, 0, 1.0] (collecting dense annotations)

Ideal ranking of answer options : ["yes", "yes it is", "probably", "two", "no"]

Submitted ranking of answer options : ["yes", "yes it is", "two", "probably", "no"]

$$NDCG = \frac{DCG_{submitted}}{DCG_{ideal}} \approx \frac{1.63}{1.88} \approx 0.87$$

NDCG penalizes the lower rank of candidates with high relevance scores !

$$\sum_{i=1}^{Q} \frac{1}{rank_i^{gt}}$$

```
Answer options : ["two", "yes", "probably", "no", "yes it is"]
                                    DCG = \sum_{j=1}^{j} \frac{relevance_j}{log_2(j+1)}
```

Experimental Results

SOTA Comparison

	VisDial v0.9 (val)				VisDial v1.0 (val)						
Model	MRR ↑	R@ 1↑	R@5↑	R@10 ↑	Mean↓	NDCG↑	MRR ↑	R@ 1↑	R@5↑	R@10 ↑	Mean↓
MN† [12]	52.59	42.29	62.85	68.88	17.06	51.86	47.99	38.18	57.54	64.32	18.60
HCIAE [†] [55]	53.86	44.06	63.55	69.24	16.01	59.70	49.07	39.72	58.23	64.73	18.43
CoAtt† [90]	55.78	46.10	65.69	71.74	14.43	59.24	49.64	40.09	59.37	65.92	17.86
CorefNMN [40]	53.50	43.66	63.54	69.93	15.69	-	-	-	-	-	-
RvA [61]	55.43	45.37	65.27	72.97	10.71	-	-	-	-	-	-
Primary [22]	-	-	-	-	-	-	49.01	38.54	59.82	66.94	16.60
DMRM [10]	55.96	46.20	66.02	72.43	13.15	-	50.16	40.15	60.02	67.21	15.19
ReDAN [19]	-	-	-	-	-	60.47	50.02	40.27	59.93	66.78	17.40
DAM [29]	-	-	-	-	-	60.93	50.51	40.53	60.84	67.94	16.65
KBGN [28]	-	-	-	-	-	60.42	50.05	40.40	60.11	66.82	17.54
LTMI [60]	-	-	-	-	-	63.58	50.74	40.44	61.61	69.71	14.93
VD-BERT [89]	55.95	46.83	65.43	72.05	13.18	-	-	-	-	-	-
MITVG [9]	<u>56.83</u>	<u>47.14</u>	<u>67.19</u>	<u>73.72</u>	<u>11.95</u>	61.47	51.14	41.03	61.25	68.49	<u>14.37</u>
UTC [8]	-	-	-	-	-	<u>63.86</u>	<u>52.22</u>	<u>42.56</u>	<u>62.40</u>	<u>69.51</u>	15.67
Student (ours)	60.03 ±.18	50.40 ±.15	70.74±.09	77.15±.13	$12.13 \pm .18$	65.47 ±.14	53.19 ±.11	43.08 ±.10	64.09 ±.05	71.51 ±.13	$14.34 \pm .15$

GST in the Low-data Regime

		NDCG					
Model	1%	5%	10%	20%	30%		
Teacher	27.64	50.04	54.46	57.14	60.67		
Student	38.73 (+11.09)	56.60 (+6.56)	58.62 (+4.16)	60.92 (+3.78)	63.09 (+2.42)		

N-gram Diversity of Generated Questions

Model		No Match			
	N=1	N=2	N=3	N=4	110 111000
Questioner	28.06	56.46	76.98	92.80	95.38
Questioner	± 0.14	±0.09	± 0.08	± 0.08	± 0.15

Experimental Results

Adversarial Robustness (Visual FGSM attack)

el	No Attack	Coreference Attack	Random Token Attack				
	1.001100000		10%	20%	30%	40%	
her ent (iter1, full)	56.55 58.53	52.60 54.26	$\begin{array}{c} 54.69 {\pm} 1.12 \\ 56.59 {\pm} 1.37 \end{array}$	$52.86{\scriptstyle \pm 0.79}\\54.55{\scriptstyle \pm 1.15}$	$\begin{array}{c} 49.41{\scriptstyle\pm2.09} \\ 50.98{\scriptstyle\pm2.06} \end{array}$	$45.04{\pm}2$ $46.56{\pm}1$	
ent (iter1) ent (iter2) ent (iter3)	58.63 56.92 59.30	54.34 52.69 55.44	$\begin{array}{c} 55.59 {\pm} 0.88 \\ 55.59 {\pm} 0.88 \\ \textbf{57.25} {\pm} 0.91 \end{array}$	$\begin{array}{c} 54.26 \pm 1.54 \\ 53.57 \pm 1.40 \\ \textbf{55.10} \pm 1.50 \end{array}$	$\begin{array}{c} 51.04 {\pm} 2.39 \\ 49.95 {\pm} 1.91 \\ \textbf{52.11} {\pm} 2.75 \end{array}$	$47.04{\pm}2$ $46.82{\pm}2$ $48.00{\pm}2$	

Adversarial Robustness (Textual attack)

2.28 1.96 2.03 2.02 2.90

Visualization of Human and Machine Conversation

Image & Caption	Human Conversation	Machine Conversation
For the second	 D1 : Is it daytime? Yes D2 : Is this is a busy full parking lot? No D3 : Is the man dressed for work? No D4 : What is he wearing? Polo shirt and shorts D5 : Are there other people around? No D6 : Do you see any cars? Yes D7 : Are there a lot of cars? No D8 : How many cars do you think there are? 3 D9 : What colors are the cars? White and black D10 : Is the man wearing sunglasses? Yes 	 D1 : Is the man wearing a hat? No D2 : Is the man dressed for cold or warm weather? Warm weather D3 : Is the man talking on a cell phone? Yes he is D4 : Is it a flip phone? Yes it is D5 : What color is the phone? Black and silver D6 : Is the man holding it in his hand? Yes it is D7 : Are there any cars in the parking lot? Yes D8 : Is he waiting for someone to get on the car? No just standing D9 : Is the man looking at the camera? No he is looking off to the side D10 : Are there any buildings in the background? \ There is a brick building behind him
	 D1 : Is the horse wearing a saddle? No D2 : Is it a large horse? Yes D3 : Is the person male or female? Female D4 : About what age is she? She is about 25 D5 : Is she wearing riding gear? Yes D6 : Is this a country setting? Yes it is D7 : Do you see a barn? No D8 : Does the horse look well cared for? Yes it do D9 : Is there a blanket on the horse? No D10 : Is the weather nice? Yes 	 D1 : Is the horse large? Yes D2 : Is it facing the camera? No D3 : Is the person a man or a woman? Woman D4 : Does the horse have a saddle? No she does not D5 : Is it sunny? It is hard to tell but it is daylight D6 : Is the woman wearing a hat? Yes she is D7 : What color is the woman's hair? It appears to be brown D8 : Does the woman have long hair? I cannot tell D9 : What color is her shirt? She is wearing a black jacket D10 : Are there any trees? There are no trees
<image/> <text></text>	 D1 : Is it daytime? Yes D2 : Is the sun out? Yes D3 : How old is the woman? 24 D4 : Is she alone? Yes D5 : Is she wearing sunglasses? No D6 : Is she carrying anything else with her? No D7 : Is she wearing sneakers? Yes D8 : What color is her shirt? Wearing a black jacket D9 : Is she smiling? No D10 : Where is she going? West on the road 	 D1 : Is this a color photo? Yes, it is a color photo D2 : Is it daytime? Yes D3 : What is the weather like? Looks like sunny D4 : What color is the woman's hair? Hair is brown D5 : How old does she seem? Around 35 D6 : Is she wearing a helmet? No helmet seen D7 : Is she wearing jeans? No D8 : Is she wearing glasses? No D9 : What color is her bike? Bike is blue in color D10 : Are there any cars? Yes, i see 1 car

Code: <u>https://github.com/gicheonkang/gst-visdial</u> Paper: https://arxiv.org/abs/2205.12502

Thank You !