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Paper Preview
• Improve a recent method called connectivity modeling on general medical segmentation.

• Propose an efficient pipeline for decoupling the directional sub-latent space from the 
shared space in a connectivity-based model.  



Medical Segmentation
• Maintain anatomical consistency is important in medical segmentation.

• Efforts in deep learning-based methods mainly focus on the internal network structures.

• Pixel-wise classification-based modeling is suboptimal [14-16] and results in low spatial 
coherence.

GT Non-anatomical consistent predictionImage



Connectivity Modeling
• Highlights the topological aspects of the segmentation problem with an inter-pixel 

relation-aware label called connectivity mask.

• Connectivity mask: each channel represents if a pixel on the original image belongs to the 
same class of interest with one of its neighboring pixels at a specific direction. 



Latent Space of Connectivity Modeling
• Two unique sub-latent spaces: categorical (embedded in pixel connection) and directional 

(embedded in channels).

• Highly coupled if directly modeling the connectivity.

• Effectively disentangling sub-spaces improves the overall representation.



DconnNet
• Disentangle the sub-spaces with Sub-path Direction Excitation (SDE).

• Enhance directional-based feature with Interactive Feature-space Decoder (IFD).
• Alleviate two-level data imbalance with Size Density Loss (SDL).



Sub-path Direction Excitation (SDE)
• Extract a directional prior by coarsely supervision and channel squeezing.

• Decouple the directional features from shared latent space by channel-wise slicing.

• Enhance the channel-wise directional representation with sub-path excitation.



Interactive Feature-Space Decoder (IFD)
• Ensure directional information can be effectively fused in each layer.

• Space flow: enhance feature map with directional embedding and generate new embeddings.

• Feature flow: upsample feature with a decoder layer.



Connectivity Modeling Components
• Connectivity masks as label.

• BV and RCA modules as recommended in [16,22].



Size Density Loss
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• Designed for the two-level data imbalanced dataset based on the label size distribution.

• Size density weight: inverse proportional to the 𝑃𝐷𝐹 of label size 𝑘 of the class 𝑗.

• Final form as a variant of Dice loss.

where 𝑆 is the final segmentation prediction, 𝐺 is the ground truth, 𝜀 is 
the stabilization term [51] and is usually set as 1.



Experiment: Retouch
• Retouch Dataset: an OCT retinal fluids segmentation benchmark.

𝐷𝑆𝐶!:	volume-level Dice
𝐷𝑆𝐶:	image-level Dice 
𝐴𝑉𝐷	: absolute volume difference 
𝐵𝐴𝐶𝐶:	volume-wise balanced accuracy



Experiment: ISIC 2018
• ISIC2018 Dataset: a skin lesion segmentation benchmark.



Experiment: CHASEDB1
• CHASEDB1 Dataset: a retinal vessel segmentation benchmark.



Ablation Study: Overall
• Ablation study were conducted on Retouch Dataset.



Ablation Study: Prior and Sub-path
• Ablation study on directional prior and the sub-path attention mechanism.

Visualization of latent channel embeddings of DconnNet 
before and after SDE module using T-SNE. 



Conclusion
• Proposed a directional connectivity modeling scheme for segmentation that 

decouples, tracks, and utilizes the directional information across the network.

• Experiments on various public medical image segmentation benchmarks showed the 
effectiveness of our model.

• A future direction is 3D segmentation, due to the relatively small parameter increase 
in 3D connectivity modeling.


