

Directional Connectivity-based Segmentation for Medical Images

Ziyun Yang¹ and Sina Farsiu¹

¹ Department of Biomedical Engineering, Duke University

Paper Preview

• Improve a recent method called connectivity modeling on general medical segmentation.

• Propose an efficient pipeline for decoupling the directional sub-latent space from the shared space in a connectivity-based model.

Medical Segmentation

- Maintain anatomical consistency is important in medical segmentation.
- Efforts in deep learning-based methods mainly focus on the internal network structures.
- Pixel-wise classification-based modeling is suboptimal [14-16] and results in low spatial coherence.

GT

Non-anatomical consistent prediction

Image

Connectivity Modeling

- Highlights the topological aspects of the segmentation problem with an inter-pixel relation-aware label called connectivity mask.
- Connectivity mask: each channel represents if a pixel on the original image belongs to the same class of interest with one of its neighboring pixels at a specific direction.

Latent Space of Connectivity Modeling

- Two unique sub-latent spaces: categorical (embedded in pixel connection) and directional (embedded in channels).
- Highly coupled if directly modeling the connectivity.
- Effectively disentangling sub-spaces improves the overall representation.

DconnNet

- Disentangle the sub-spaces with Sub-path Direction Excitation (SDE).
- Enhance directional-based feature with Interactive Feature-space Decoder (IFD).
- Alleviate two-level data imbalance with Size Density Loss (SDL).

Sub-path Direction Excitation (SDE)

- Extract a directional prior by coarsely supervision and channel squeezing.
- Decouple the directional features from shared latent space by channel-wise slicing.
- Enhance the channel-wise directional representation with sub-path excitation.

Interactive Feature-Space Decoder (IFD)

- Ensure directional information can be effectively fused in each layer.
- Space flow: enhance feature map with directional embedding and generate new embeddings.
- Feature flow: upsample feature with a decoder layer.

Connectivity Modeling Components

- Connectivity masks as label.
- BV and RCA modules as recommended in [16,22].

Size Density Loss

- Designed for the two-level data imbalanced dataset based on the label size distribution.
- Size density weight: inverse proportional to the *PDF* of label size *k* of the class *j*.

$$P_j(k) = \begin{cases} 1, & k = 0, \\ -\log\left(PDF_j(k)\right), & k \neq 0. \end{cases}$$

• Final form as a variant of Dice loss.

$$L_{sd} = \sum_{j}^{Class} P_j(k) \left(1 - \frac{2 \times \sum (S \times G_s) + \varepsilon}{\sum S + \sum G_s + \varepsilon} \right)$$

where S is the final segmentation prediction, G is the ground truth, ε is the stabilization term [51] and is usually set as 1.

Experiment: Retouch

• Retouch Dataset: an OCT retinal fluids segmentation benchmark.

Experiment: ISIC 2018

• ISIC2018 Dataset: a skin lesion segmentation benchmark.

Method	DSC	IOU	ACC	PREC						
U-Net [58]	88.41	81.23	95.53	90.7				-		\bullet
BCDU-Net [77]	88.33	80.84	95.48	89.68						
CE-Net [60]	89.23	82.34	95.76	91.51						
nnU-Net [61]	89.24	82.35	95.79	91.45						
HiFormer [78]	88.54	81.45	95.59	91.09						
CPFNet [62]	89.34	82.64	95.89	91.38						
FATNet [79]	88.84	81.79	95.62	91.18						
Ms RED [71]	89.48	82.71	95.89	91.83					k A	
DconnNet	90.43	83.91	96.39	91.54	Image	GT	CPFNet [62]	FATNet [79]	Ms RED [71]	DconnNet

Experiment: CHASEDB1

• CHASEDB1 Dataset: a retinal vessel segmentation benchmark.

Method	clDice	DSC	IOU	eta_0	β_1
U-Net [58]	74.0	74.7	59.3	1.390	2.633
Att-UNet [59]	75.3	75.7	61.0	1.330	2.531
GT-DLA [80]	81.0	80.6	67.4	0.790	1.969
CE-Net [60]	82.0	81.0	68.1	0.383	1.670
clDiceLoss [73]	82.9	81.0	68.1	0.345	1.656
GraphCutLoss [72]	82.6	81.4	68.8	0.437	1.692
DconnNet	83.3	81.8	69.4	0.341	1.630

• Ablation study were conducted on Retouch Dataset.

		Ма	1.10	т	000				
Conn		module		L088		DSC	DSC	AVD	BACC
		SDE	IFD	DS	SDL	200	2000		21100
1				\checkmark		83.2	65.0	0.025	87.0
2	\checkmark			\checkmark		85.8	70.3	0.024	87.7
3	\checkmark	\checkmark		\checkmark		86.2	73.7	0.023	87.9
4	\checkmark	\checkmark	\checkmark	\checkmark		86.7	75.2	0.023	88.3
5	\checkmark	\checkmark	\checkmark		\checkmark	87.7	78.2	0.020	90.5

Table 4. Ablation study of the Retouch Dataset. Conn stands for connectivity modeling with L_{bicon} . DS stands for dice loss.

Ablation Study: Prior and Sub-path

• Ablation study on directional prior and the sub-path attention mechanism.

rable 5. Ablation study on unectional prior.							
DconnNet	DSC	DSC_{v}	AVD	BACC			
w/o. prior	86.3	72.3	0.023	89.1			
w/. prior	87.7	76.6	0.020	90.5			

Table 5 Ablation study on directional prior

Table 6. Ablation study on Sub-path attention. Backbone_Conn is the connectivity-based modeling on backbone [16], DA is the dual attention, and NL is the non-local module.

	Backbone_Conn	DSC	DSC_{v}	AVD	BACC
-	+ DA [10]	84.7	69.5	0.027	86.2
	+ NL [42]	85.1	70.0	0.028	87.2
	+ SDE	87.7	76.6	0.020	90.5

Visualization of latent channel embeddings of DconnNet before and after SDE module using T-SNE.

Conclusion

- Proposed a directional connectivity modeling scheme for segmentation that decouples, tracks, and utilizes the directional information across the network.
- Experiments on various public medical image segmentation benchmarks showed the effectiveness of our model.
- A future direction is 3D segmentation, due to the relatively small parameter increase in 3D connectivity modeling.

