

Robust Outlier Rejection for 3D Registration with Variational Bayes

Haobo Jiang¹, Zheng Dang², Zhen Wei², Jin Xie¹, Jian Yang¹, and Mathieu Salzmann²

¹PCA Lab, Nanjing University of Science and Technology, China ²CVLab, EPFL, Switzerland

Robust Outlier Rejection for 3D Registration with Variational Bayes **CV**

Bayes JUNE 18-22, 2023 CVPR VANCOUVER, CANADA

> Application

Object pose estimation

Lidar SLAM

3D scene reconstruction

Background - Point Cloud Registration

• Estimate rigid transformation (R + t) to align overlap region between the source and target

Background - Feature descriptor-based registration pipeline

- Construct correspondence (inlier + outlier) with feature similarity
- Search inlier subset for optimal transformation estimation

Background - Deep outlier rejection methods

- Formulate outlier rejection as inlier/outlier classification
- **Core**: Learning discriminative inlier/outlier feature representations

Baseline - Spatial Consistency-guided Non-local Network (SCNonlocal) [1]

Inlier/outlier feature aggregation with long-range dependencies $f_i = f_i + \text{MLP}(\sum_{j}^{|C|} \text{softmax}_j(\alpha \beta) g(f_j))$

JUNE 18-22, 2023

• Correct long-range dependencies with **spatial consistency**

[1] PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency. CVPR'2021.

Baseline - Spatial Consistency-guided Non-local Network (SCNonlocal) [1]

• Limitation

- High ratios of wrong spatial consistencies => Mislead attention map
- Lack of uncertainty modeling ability (repetitive, geometry-less...)

[1] PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency. CVPR'2021.

> Approach - Variational Bayesian-based Non-local Network (VBNonlocal)

- Solutions
- Lack of uncertainty modeling ability (repetitive, geometry-less...)
- => Inject random variables into query/key/value features
- High ratios of wrong spatial consistencies => Mislead attention map
- => Bayesian-driven long-range dependencies

[1] PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency. CVPR'2021.

> Approach - Variational Bayesian-based Non-local Network (VBNonlocal)

- Why VBNonlocal can achieve more discriminative long-range dependencies?
 - Variational posterior is label dependent => more discriminative
 - Label-dependent posterior to guide the prior distribution in training phase
 - Sample more discriminative feature from the learned prior in test phase

JUNE 18-22, 2023 貰

JUNE 18-22, 2023

JUNE 18-22, 2023 🟅

JUNE 18-22, 2023 🏅

> Approach – Variational low bound

$$ELBO(\theta, \phi) = \mathbb{E}_{\prod_{l=0}^{L-1} q_{\phi}(z_{q,k,v}^{l} | \mathbf{h}_{q,k,v}^{l}, \mathbf{b})} \left[\ln y_{\theta}(\mathbf{b} | \tilde{\mathbf{F}}^{L}) \right] - \sum_{l=0}^{L-1} \mathbb{E}_{q_{\phi}} \left[D_{\mathrm{KL}} \left(q_{\phi}(z_{q,k,v}^{l} | \mathbf{h}_{q,k,v}^{l}, \mathbf{b}) || p_{\theta}(z_{q,k,v}^{l} | \mathbf{h}_{q,k,v}^{l}) \right) \right]$$

Approach - Voting-based Inlier Searching

PointDSC:

JUNE 18-22, 2023

Robust Outlier Rejection for 3D Registration with Variational Bayes

> Experimental Results - Comparison with SOTA Methods

• 3DMatch & KITTI

	3DMatch (FCGF)			3DMatch (FPFH)			KITTI (FCGF)			KITTI (FPFH)			
Models	RR(†)	RE(↓)	TE(↓)	RR(†)	RE(↓)	TE(↓)	$RR(\uparrow)$	RE(↓)	TE(↓)	RR(†)	RE(↓)	TE(↓)	Sec.
FGR [52]	79.17	2.93	8.56	41.10	4.05	10.09	96.58	0.38	22.30	1.26	1.69	47.18	1.39
SM [26]	86.57	2.29	7.07	55.82	2.94	8.13	96.58	0.50	19.88	75.50	0.66	15.01	0.02
RANSAC [16]	91.50	2.49	7.54	73.57	3.55	10.04	97.66	0.28	22.61	89.37	1.22	25.88	6.43
TEASER++ [45]	85.77	2.73	8.66	75.48	2.48	7.31	83.24	0.84	12.48	64.14	1.04	14.85	0.07
DGR [10]	91.30	2.40	7.48	69.13	3.78	10.80	95.14	0.43	23.28	73.69	1.67	34.74	1.36
DHVR [25]	89.40	2.19	6.95	67.10	2.56	7.67	_	_	_	_	_	_	0.40
SC2_PCR [9]	<u>93.10</u>	2.04	<u>6.53</u>	83.92	2.09	<u>6.66</u>	<u>97.48</u>	0.33	20.66	97.84	<u>0.39</u>	9.09	0.09
PointDSC [2]	92.42	<u>2.05</u>	6.49	77.51	2.08	6.51	97.66	0.47	20.88	<u>98.20</u>	0.58	7.27	0.11
VBReg	93.53	2.04	6.49	82.75	2.14	6.77	98.02	0.32	20.91	98.92	0.32	7.17	0.22

Table 1. Quantitative comparison on 3DMatch [50] and KITTI [19] benchmark datasets with descriptors FCGF and FPFH. The registration speed is achieved by computing the averaged time cost on 3DMatch with FCGF descriptor.

JUNE 18-22, 2023

• 3DLoMatch

Feature	Model	5000	2500	1000	500	250
	FGR [52]	18.6	19.4	16.9	16.0	12.4
	SM [26]	32.4	31.3	31.4	28.0	23.5
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.9				
	TEASER++ [45]	42.8	42.4	39.5	34.5	250 12.4 23.5 25.9 25.7 <u>34.6</u> 36.2 34.3 26.7 34.5 38.0 50.2 58.2 58.2 56.7 60.5 <u>62.0</u> 56.5 60.5 63.0
FCGF	DHVR [25]	50.4	49.6	46.4	5.9 16.0 12.4 1.4 28.0 23.5 5.9 32.1 25.9 9.5 34.5 25.7 5.4 41.0 $\underline{34.6}$ 1.8 $\underline{46.4}$ 36.2 3.4 43.4 34.3 5.8 37.7 26.7 2.9 47.2 34.5 9.7 39.6 38.0 5.4 54.5 50.2 2.4 61.5 58.2 1.9 59.0 56.7 5.1 64.6 60.5	
	SC2_PCR [9]	<u>57.4</u>	<u>56.5</u>	<u>51.8</u>	<u>46.4</u>	16.0 12.4 28.0 23.5 32.1 25.9 34.5 25.7 41.0 34.6 46.4 36.2 43.4 34.3 37.7 26.7 47.2 34.5 39.6 38.0 54.5 50.2 61.5 58.2 59.0 56.7 64.6 60.5 65.2 62.0 58.8 56.5 63.4 60.5
	SC2_PCR [9] 57.4 56.5 51.8 46.4 TR_DE [8] 49.5 50.4 48.4 43.4 PointDSC [2] 55.8 52.6 46.8 37.7 VBReg 58.3 56.8 52.9 47.2 FGR [52] 36.4 38.2 39.7 39.6	34.3				
	PointDSC [2]	CK [9] 57.4 50.5 51.8 46.4 36.2 $3[8]$ 49.5 50.4 48.4 43.4 34.3 $0SC [2]$ 55.8 52.6 46.8 37.7 26.7 g 58.3 56.8 52.9 47.2 34.5 $52]$ 36.4 38.2 39.7 39.6 38.0 61 53.8 55.1 55.4 54.5 50.2				
	VBReg	58.3	56.8	52.9	47.2	34.5
	FGR [<mark>52</mark>]	36.4	38.2	39.7	39.6	38.0
	SM [26]	53.8	55.1	1000 500 1 16.9 16.0 1 31.4 28.0 2 35.9 32.1 2 39.5 34.5 2 46.4 41.0 3 51.8 46.4 3 46.8 37.7 2 39.7 39.6 3 55.4 54.5 5 62.4 61.5 5 61.9 59.0 5 66.1 64.6 6 68.6 65.2 6 61.7 58.8 5 66.5 63.4 6 68.7 66.4 6	50.2	
	RANSAC [16]	62.3	62.8	62.4	61.5	58.2
	TEASER++ [45]	62.9	62.6	61.9	59.0	56.7
Predator	DHVR [25]	67.2	67.3	66.1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
	SC2_PCR [9]	<u>69.5</u>	<u>69.5</u>	<u>68.6</u>	<u>65.2</u>	<u>62.0</u>
	TR_DE [8]	64.0	64.8	61.7	58.8	56.5
	PointDSC [2]	68.1	67.3	66.5	63.4	60.5
	VBReg	69.9	69.8	68.7	66.4	63.0

Table 2. Registration recall (*RR*) with different numbers of points on 3DLoMatch benchmark dataset [21].

Experimental Results - *Ablation studies*

	3DMatch		3DLoMatch (FCGF)					3DLoMatch (Predator)					
Model	FCGF	FPFH	5000	2500	1000	500	250	5000	2500	1000	500	250	Sec.
PointDSC w/ SCNonlocal ^{xyz}	92.42	77.51	55.8	52.6	46.8	37.7	26.7	68.1	67.3	66.5	63.4	60.5	0.11
PointDSC w/ VBNonlocal ^{xyz}	93.04	81.21	57.4	55.1	50.9	41.9	27.6	69.9	68.2	68.7	65.2	61.5	0.17
PointDSC w/ SCNonlocal ^{feat}	92.36	77.76	54.6	50.6	44.9	36.8	25.4	69.2	68.6	67.9	63.5	59.9	0.13
PointDSC w/ VBNonlocal ^{feat}	92.98	80.96	56.8	55.1	50.9	42.5	27.5	69.6	69.0	68.0	65.2	60.9	0.18
PointDSC w/ SCNonlocal ^{cls}	92.98	78.99	54.1	52.2	46.0	38.7	27.7	67.6	66.9	67.2	63.7	60.2	0.11
PointDSC w/ VBNonlocal ^{feat} +Vote	<u>93.16</u>	<u>81.45</u>	58.2	<u>55.9</u>	<u>52.6</u>	<u>44.8</u>	<u>30.5</u>	<u>70.2</u>	<u>69.1</u>	<u>68.7</u>	<u>66.4</u>	<u>63.2</u>	0.20
PointDSC w/ VBNonlocal ^{feat} +Vote+CS	93.53	82.62	<u>58.1</u>	56.8	52.9	47.6	34.6	70.5	69.7	69.5	66.7	64.9	0.22
Iteration times $L = 6$	93.16	81.64	58.3	<u>56.5</u>	53.5	48.5	35.7	<u>70.3</u>	69.1	<u>68.9</u>	<u>66.4</u>	64.0	0.19
Iteration times $L = 9$	<u>93.41</u>	83.12	57.9	56.8	53.5	<u>48.0</u>	33.6	69.9	<u>69.5</u>	68.6	66.3	<u>64.7</u>	0.20
Iteration times $L = 12^*$	93.53	<u>82.62</u>	<u>58.1</u>	56.8	<u>52.9</u>	47.6	<u>34.6</u>	70.5	69.7	69.5	66.7	64.9	0.22
Random feat. dim. $\tilde{d} = 32$	93.53	82.62	59.0	57.8	54.4	46.7	33.3	<u>70.1</u>	69.1	<u>69.0</u>	66.8	65.4	0.20
Random feat. dim. $\tilde{d} = 64$	<u>93.41</u>	<u>81.95</u>	<u>58.3</u>	56.0	<u>53.3</u>	<u>47.2</u>	34.6	<u>70.1</u>	69.9	<u>69.0</u>	67.2	<u>64.9</u>	0.21
Random feat. dim. $\tilde{d} = 128^*$	93.53	82.62	58.1	<u>56.8</u>	52.9	47.6	34.6	70.5	<u>69.7</u>	69.5	66.7	<u>64.9</u>	0.22

Table 3. Ablation studies on 3DMatch [48] and 3DLoMatch [19] datasets. *SCNonlocal*: Spatial consistency-guided non-local network; *VBNonlocal*: Variational Bayesian-based non-local network; *Vote*: Voting-based inlier searching; *CS*: Conservative seed selection.

Thanks!