SAMSUNG

Stanford University Stanford University STANFORD COMPUTATIONAL IMAGING LAB

SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene

WED-AM-027

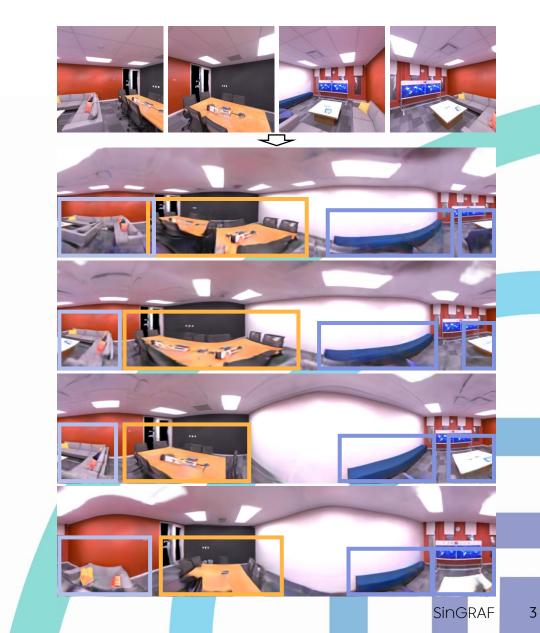
Minjung Son^{*1,2} Jeong Joon Park^{*2} Leonidas Guibas² Gordon Wetzstein²

¹Samsung Advanced Institute of Technology (SAIT)

²Stanford University

June 21 Wed, 2023

Content Creation from a Few Unposed Images?

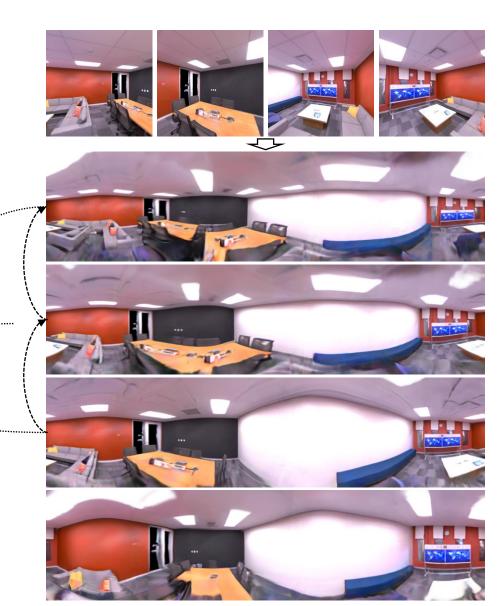


Yes, SinGRAF

01 | Singraf

First 3D-Aware GAN for Individual Scenes

Learning 3D generative radiance field from a few unposed images Creating realistic variations of a single 3D scene Realistic and diverse results with 3D view consistency

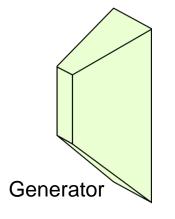


SinGRAF Result $\#1 \rightarrow \#2$ with Latent Interpolation (Fixed Camera)

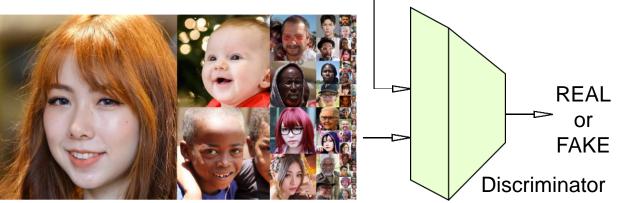
4

Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering Supervised adversarially on 2D without any 3D supervision High-quality images with 3D view consistency

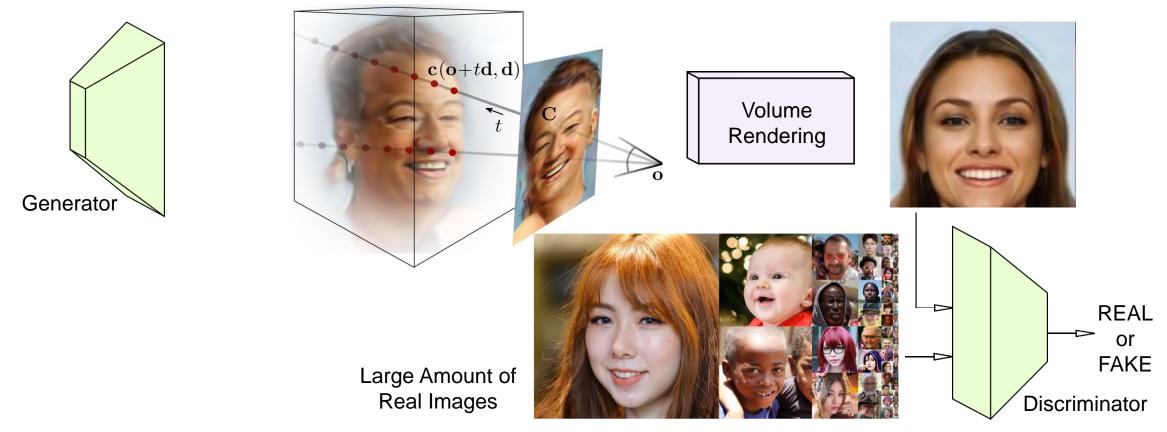


Large Amount of Real Images



Learning 3D Generative Radiance Field from a Set of Single-View Images

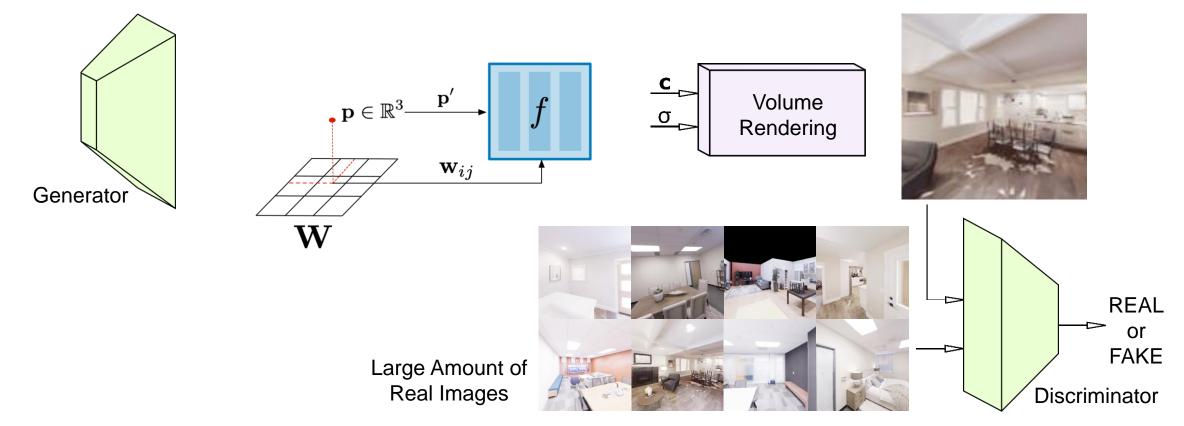
Projecting 3D generative radiance fields into 2D images using volume rendering Supervised adversarially on 2D without any 3D supervision High-quality images with 3D view consistency



[piGAN] pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis, CVPR2021

Learning 3D Generative Radiance Field from a Set of Single-View Images

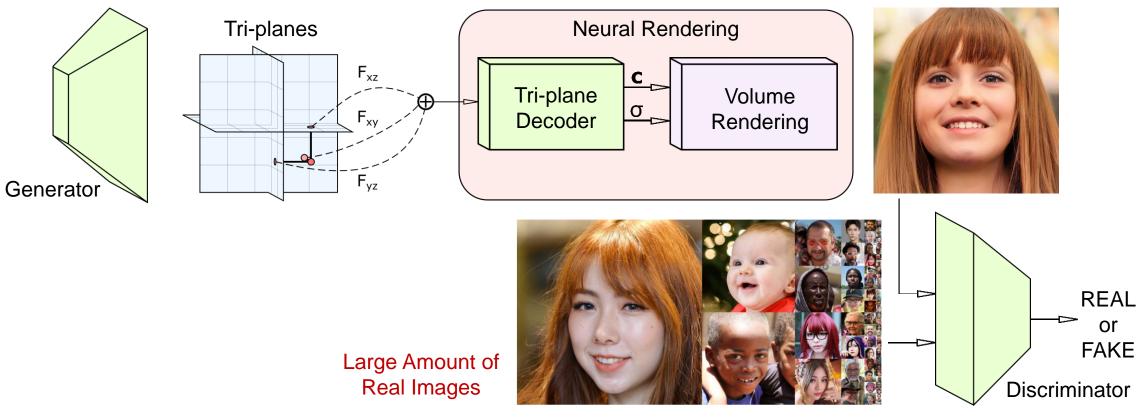
Projecting 3D generative radiance fields into 2D images using volume rendering Supervised adversarially on 2D without any 3D supervision High-quality images with 3D view consistency



[GSN] Unconstrained Scene Generation with Locally Conditioned Radiance Fields, ICCV2021

Learning 3D Generative Radiance Field from a Set of Single-View Images

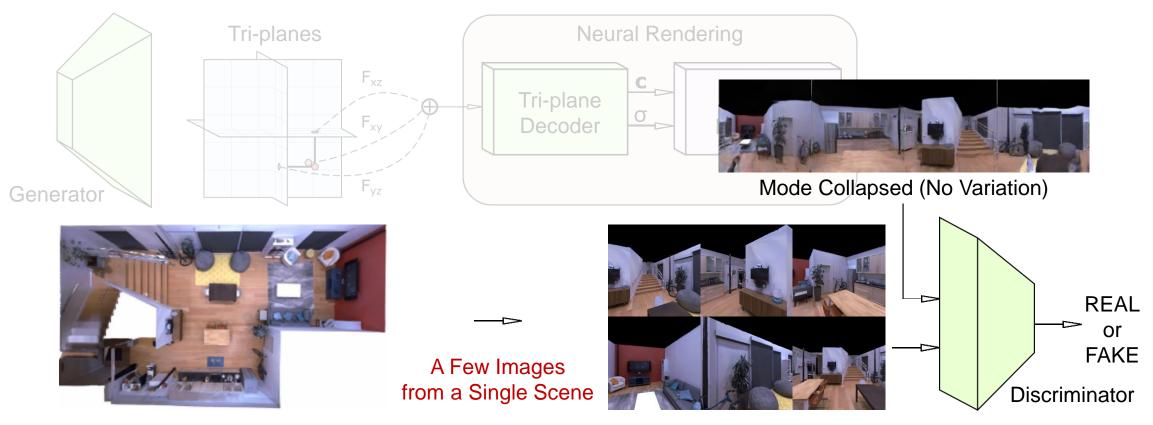
Projecting 3D generative radiance fields into 2D images using volume rendering Supervised adversarially on 2D without any 3D supervision High-quality images with 3D view consistency



[EG3D] Efficient Geometry-aware 3D Generative Adversarial Networks, CVPR2022

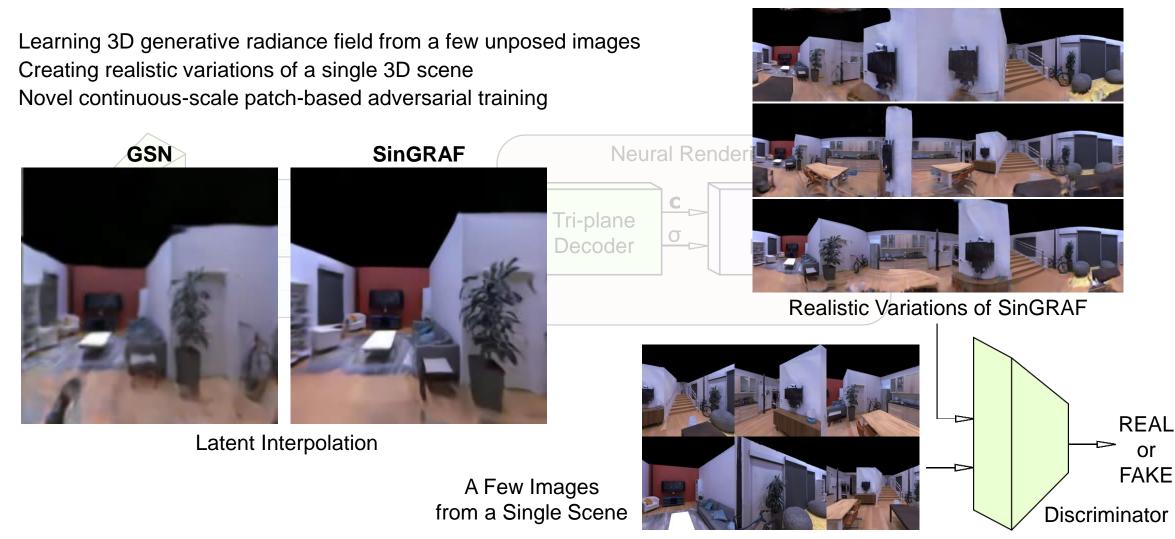
Learning 3D Generative Radiance Field from a Set of Single-View Images

Projecting 3D generative radiance fields into 2D images using volume rendering Supervised adversarially on 2D without any 3D supervision High-quality images with 3D view consistency



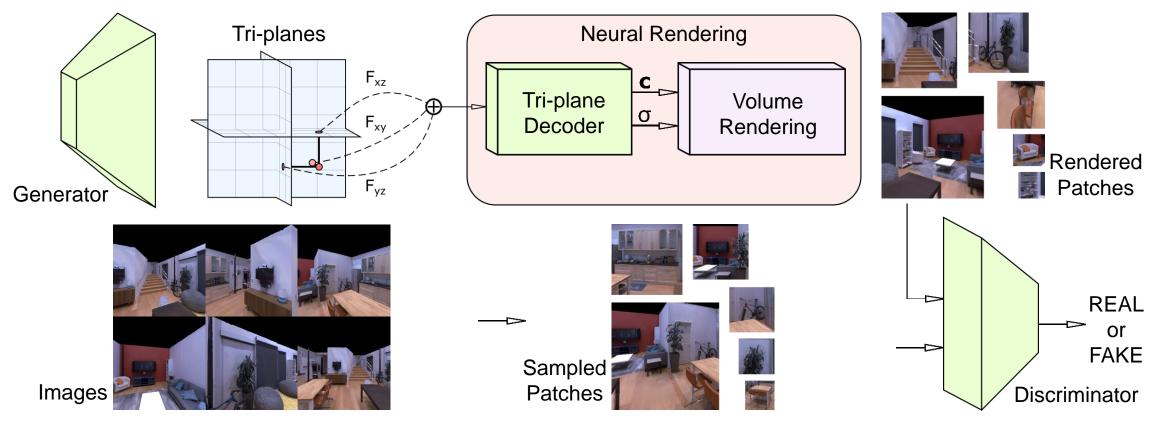
03 | Single Scene 3D GAN

SinGRAF



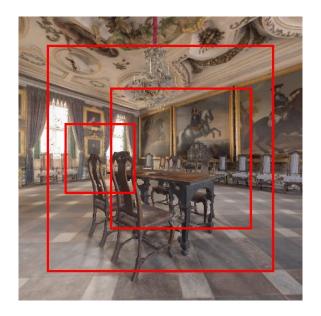
Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales sRandom scale $s \sim U(s_{min}(t), s_{max}(t))$ with gradually decreasing along training epoch tDiscriminating w/ scale conditioning for enhanced quality



Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales *s* Random scale $s \sim U(s_{min}(t), s_{max}(t))$ with gradually decreasing along training epoch *t* Discriminating w/ scale conditioning for enhanced quality



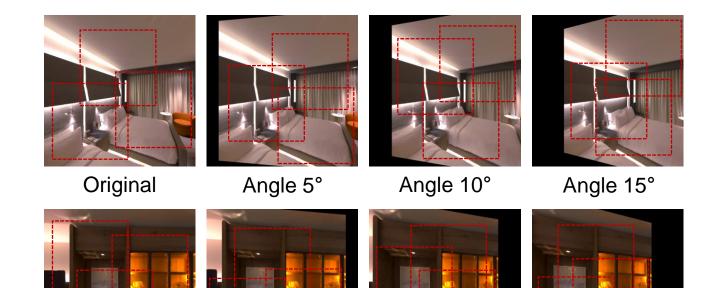
Training Epoch t

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales *s* Random scale $s \sim U(s_{min}(t), s_{max}(t))$ with gradually decreasing along training epoch *t* Discriminating w/ scale conditioning for enhanced quality

Perspective Augmentation

Imitating camera rotation with patch cropping



Angle -10°

Angle -5°

Original

Angle -15°

Progressive-Scale Patch Discrimination

Volume rendering of patches with fixed resolution but different scales *s* Random scale $s \sim U(s_{min}(t), s_{max}(t))$ with gradually decreasing along training epoch *t* Discriminating w/ scale conditioning for enhanced quality

Perspective Augmentation 128×128 KID↓ Div.↑ Imitating camera rotation with patch cropping full & half-scale patches .183 .001 **Camera Distribution Optimization** .308 progressive patches .046 .295 .037 + camera opt. Using adversarial loss in the early training stage + perspective aug. .335 .037

Scene Generation Results

Scenes from Replica and Matterport3D Various scenes with structural diversity & view consistency Input Images from "hotel_0" Scene

WED-AM-027

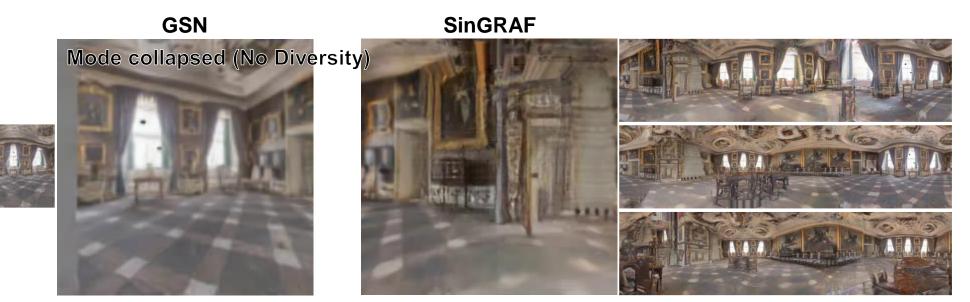
Scene Generation Results

Scenes from Replica and Matterport3D Various scenes with structural diversity & view consistency

Input Images from "apartment_0" Scene

Scene Generation Results

Scenes from Replica and Matterport3D Various scenes with structural diversity & view consistency Input Images from "castle" Scene

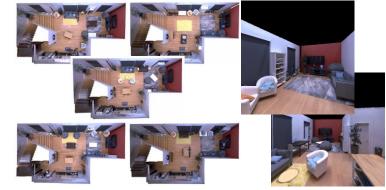


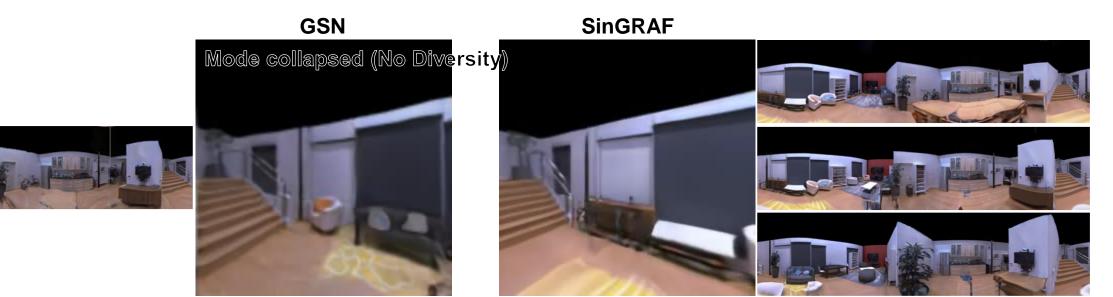
05 | Results

Modeling Scene Dynamics

5 different configurations from Replica dataset Robust for scene dynamics without any additional setting

Input from "frl_apartment" Scenes





Towards Casually-Captured Scenes

In-the-wild scene from consumer-level smartphone photographs Potential for challenging outdoor scenes

Input from Captured Scene

WED-AM-027

Latent Interpolation

Challenges

. . .

- Unknown camera intrinsic
- Camera lens distortion
- Auto exposure
- View-dependent reflection
- High-frequency textures

Quantitative Evaluation

[KID] Image quality with Kernel Inception Distance for sparsely sampled images [Div.] Scene diversity with average pairwise LPIPS distance with sample images from fixed cameras Outperforming for both realism and diversity

			$GSN(128^2)$		SinGRAF (128^2)	
GSN	SinGRAF		KID↓	Div.↑	KID↓	Div.↑
		office_3	.061	.001	.044	.297
		hotel_0	.049	.012	.037	.413
		apt.0	.069	.001	.037	.401
		frl_apt.4	.052	.001	.037	.335
		castle	.050	.001	.064	.248
		office_0	.075	.001	.053	.001
		dynamic	.089	.013	.033	.298

Visualization of Diversity Metric ("office_3")

Quantitative Comparison

Quantitative Evaluation

[KID] Image quality with Kernel Inception Distance for sparsely sampled images [Div.] Scene diversity with average pairwise LPIPS distance with sample images from fixed cameras Outperforming for both realism and diversity

Failure Case

Detailed painting uniquely identifying patch locations Possibility of unposed 3D reconstruction

Input Scene

SinGRAF with Mode Collapse

	GSN (KID↓	(128 ²) Div.↑	SinGRAI KID↓	$F(128^2)$ Div. \uparrow
office_3	.061	.001	.044	.297
hotel_0	.049	.012	.037	.413
apt.0	.069	.001	.037	.401
frl_apt.4	.052	.001	.037	.335
castle	.050	.001	.064	.248
office_0	.075	.001	.053	.001
dynamic	.089	.013	.033	.298

Quantitative Comparison

06 | Conclusion

SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene

First 3D-aware GAN from a few unposed images of a single 3D scene

Creating realistic variations w/ 3D view consistency Novel continuous-scale patch-based training

Limitation

Limited predictability or controllability Expensive per-scene training

Discussion & Future Work

Variational 3D reconstruction from unposed images More in-the-wild and highly dynamic scenes Advanced controllability

Visualization of Latent Interpolation

Stanford University Stanford University Stanford COMPUTATIONAL IMAGING LAB

SinGRAF: Learning a 3D Generative Radiance Field for a Single Scene

WED-AM-027

Thank You!

Contact Information: Minjung Son, PhD (SAIT)

Email: minjungs.son@samsung.com

Project Page: http://www.computationalimaging.org/publications/singraf