

Learning from Noisy Labels with Decoupled Meta Label Purifier

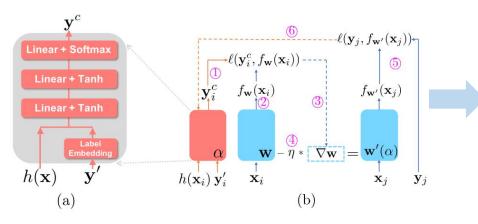
Yuanpeng Tu¹, Boshen Zhang², Yuxi Li², Liang Liu², Jian Li²,

Yabiao Wang², Chengjie Wang^{2,3†}, Cai Rong Zhao^{1†}

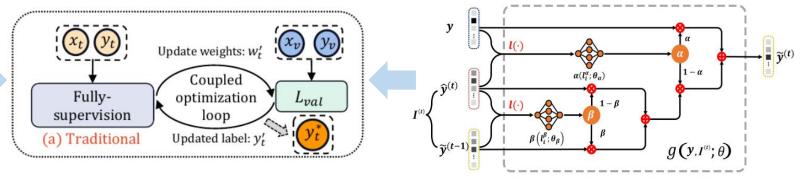
1 Tongji University, 2 Tencent Youtu Lab, 3 Shanghai Jiao Tong University

Corresponding authors. Email: zhaocairong@tongji.edu.cn, jasoncjwang@tencent.com

Motivation

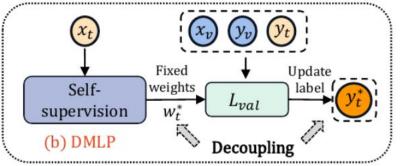


Coupled Optimization Methods



VS

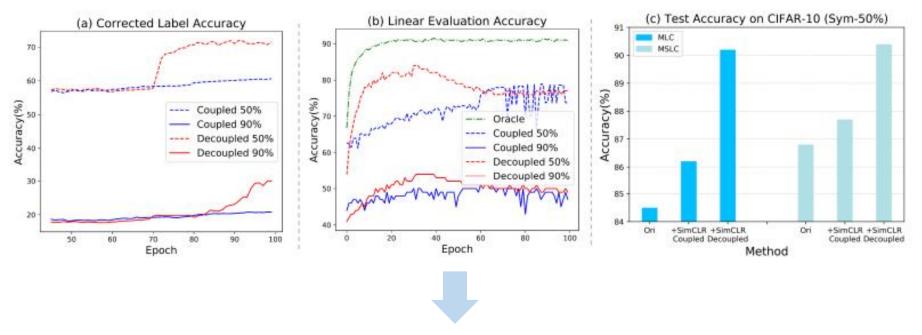
Which one is more suitable for LNL?



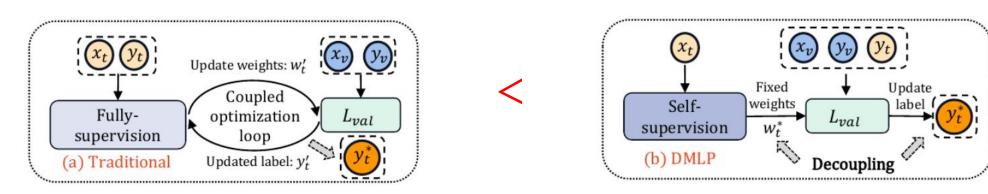
Decoupled Optimization Methods

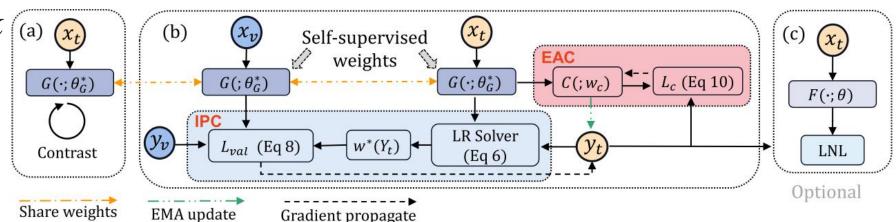
- [1] Learning to Purify Noisy Labels via Meta Soft Label Corrector. AAAI21.
- [2] Meta Label Correction for Noisy Label Learning. AAAI21.

Motivation



Conclusion: Previous coupled meta label purifier is sub-optimal in terms of both model weights and labels.





Intrinsic Primary Correction

$$\min_{\theta_{\alpha}} E_{(x_v, y_v) \in D_v} \mathcal{L}_{val}(x_v, y_v; w^*(\theta_{\alpha}))$$

 $\min_{\theta_{\alpha}} E_{(x_v,y_v) \in D_v} \mathcal{L}_{val}(x_v,y_v;w^*(\theta_{\alpha}))$ $\mathbf{s.t.} \quad w^*(\theta_{\alpha}) = \arg\min_{w} E_{(x_t,y_t) \in D_t} \mathcal{L}_{train}(x_t,y_t;w,\theta_{\alpha}) \quad \mathcal{L}_{val}(Y_t) = \frac{1}{N_v} \sum_{i=1}^{N_v} ||y'_{v,i}(Y_t) - y_{v,i}||^2 + \mathcal{H}(y'_{v,i}(Y_t)),$ $\mathbf{Minimize \ Discrepancy}$

Training Data Matrix:

$$F_t = [\mathbf{f}_{t,1}, \mathbf{f}_{t,2}, \cdots, \mathbf{f}_{t,b}]^T, \quad Y_t = [y_{t,1}, y_{t,2}, \cdots, y_{t,b}]^T. \quad y'_{v,i}(Y_t) = w^*(Y_t)^T \mathbf{f}_{v,i}.$$
Least Square Method

 $\min \mathcal{L}_{train}(F_t, Y_t; w) = \|Y_t - F_t w\|^2. \qquad w^*(Y_t) = (F_t^T F_t)^{-1} F_t^T Y_t.$

$$y'_{v,i}(Y_t) = w^*(Y_t)^T \mathbf{f}_{v,i}$$

 $Y_t^{p+1} := Y_t^p - \eta_I \nabla (\mathcal{L}_{\text{val}}(Y_t^p)).$

Classification on Val set

$$w^*(Y_t) = \left(F_t^T F_t\right)^{-1} F_t^T Y_t$$

Optimal Solution of Train set

Extrinsic Auxiliary Correction

$$\mathcal{L}_{\mathrm{c}}(w_c) = \mathcal{L}_{\mathrm{ce}}(C(\mathbf{f}_t; w_c), {y'}_t) + \mathcal{H}(C(\mathbf{f}_t; w_c)),$$
 Update Noisy Labels

$$Y_t^{p+1} := (1 - \eta_E)Y_t^p + \eta_E C(F_t; w_c)$$

Algorithm 1 The workflow of DMLP.

Input: Noisy training set D_t , clean validation set D_v , feature extractor $G(\cdot; \theta_G)$, classifier $C(\cdot; w_c)$, batch size b, max iterations m, period for regular label substitution T.

Procedure:

- Self-supervised training for G(·; θ_G)
- 2: Generate features f by Eq. (1)
- 3: for i = 1 to m do
- 4: /* IPC starts*/
- 5: $\{F_t, Y_t\} \leftarrow SampleMiniBatch(\mathbf{f}, \mathbf{D}_t, b)$
- Calculate closed-form solution w*(Y_t) by Eq. (6)
- Predict validation set labels y', by Eq. (7)
- Calculate label purification loss L_{val}(Y_t) by Eq. (8).
- Update training labels Y_t in backward process.

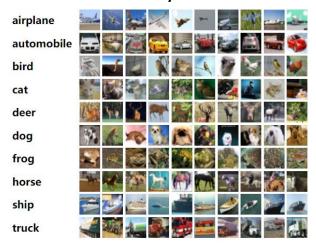
10:

- 11: /*EAC starts*/
- 12: Calculate loss for the classifier $C(\cdot; w_c)$ by Eq. (10)
- Update classifier parameter w_c in backward process.
- 14: if i = nT then
- 15: Update training labels Y_t by Eq. (11)
- 16: end if
- 17: end for

Output: The purified labels Y_t^* .

Dataset

Simulated Noisy Dataset: CIFAR-10/100



Real-world Noisy Dataset: Clothing1M

Symmetric Noise on CIFAR-10/100

Table 1. Comparison with state-of-the-art methods on CIFAR-10/100 datasets with symmetric noise. "CE" is the standard ConvNet trained with Cross-Entropy loss in an end-to-end manner. "Classifier" means adopts the pre-trained SimCLR features to re-train a linear classifier. "Val" denotes using a small clean validation set. DivideMix* denotes training DivideMix with the same validation set as additional data.

Dataset				CIFA	R-10		1	CIFA	R-100	
Method	Val	Noise ratio	20%	50%	80%	90%	20%	50%	80%	90%
Cross-Entropy (CE)	×	Best	86.8	79.4	62.9	42.7	62.0	46.7	19.9	10.1
cross Endopy (CE)	1.00	Last	82.7	57.9	26.1	16.8	61.8	37.3	8.8	3.5
Co-teaching+[36]	×	Best	89.5	85.7	67.4	47.9	65.6	51.8	27.9	13.7
Co-teaching+ [30]		Last	88.2	84.1	45.5	30.1	64.1	45.3	15.5	8.8
PENCIL [35]	X	Best	92.4	89.1	77.5	58.9	69.4	57.5	31.1	15.3
TENCIL [33]	,	Last	92.0	88.7	76.5	58.2	68.1	56.4	20.7	8.8
REED [38]	×	Best	95.8	95.6	94.3	93.6	76.7	73.0	66.9	59.6
KEED [36]	,	Last	95.7	95.4	94.1	93.5	76.5	72.2	66.5	59.4
Sel-CL+ [18]	X	Best	95.5	93.9	89.2	81.9	76.5	72.4	59.6	48.8
Sel-CL+[18]	/	Last	95.1	93.3	88.7	81.6	76.1	72.0	59.2	48.6
MOIT+[21]	X	Best	94.1	91.8	81.1	74.7	75.9	70.6	47.6	41.8
MO11+[21]	•	Last	93.8	91.3	80.6	74.0	75.2	70.1	46.9	41.2
C2D-DivideMix [40]	×	Best	96.3	95.2	94.4	93.5	78.6	76.4	67.7	58.7
C2D-DivideMix [40]	/	Last	96.2	95.1	94.1	93.4	78.3	76.0	67.4	58.4
DivideMin [15]	X	Best	96.1	94.6	93.2	76.0	77.3	74.6	60.2	31.5
DivideMix [15]	<i>y</i> .	Last	95.7	94.4	92.9	75.4	76.9	74.2	59.6	31.0
14 Y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	Best	92.9	89.3	77.4	58.7	68.5	59.2	42.4	19.5
Meta-Learning [16]	/	Last	92.0	88.8	76.1	58.3	67.7	58.0	40.1	14.3
MCIII	/	Best	92.6	88.1	77.4	67.9	66.8	52.7	21.8	15.0
MLC [41]	V	Last	91.8	87.5	77.1	67.0	66.5	52.4	18.9	14.2
MCLC [0]	/	Best	93.4	89.9	69.8	56.1	72.5	65.4	24.3	16.7
MSLC [9]	V	Last	93.3	89.4	68.8	55.2	72.0	64.9	20.5	14.6
DivideMix* [15]	1	Best	96.1	94.9	93.6	77.3	77.7	74.8	60.7	32.5
Dividelylix" [15]		Last	95.9	94.6	93.0	76.5	77.1	74.3	60.5	32.2
DIG DIV.	~	Best	94.7	94.2	93.5	92.8	72.7	68.0	63.5	61.3
DMLP-Naive	•	Last	94.2	94.0	93.2	92.0	72.3	67.4	63.2	60.9
DMI D DividaMi-	1	Best	96.3	95.8	94.5	94.3	79.9	76.8	68.6	65.8
DMLP-DivideMix		Last	96.2	95.6	94.3	94.0	79.4	76.1	68.5	65.4

Asymmetric Noise on CIFAR-10

Table 2. Evaluation results with asymmetric noise of different noisy ratio on CIFAR-10. "Validation" denotes the method exploits a small clean validation set.

Method	1	Noisy ratio		
Wethou	Validation	20%	40%	
Joint-Optim [28]	×	92.8	91.7	
PENCIL [35]	×	92.4	91.2	
M-correction [1]	×		86.3	
Iterative-CV [4]	×	-	88.0	
DivideMix [15]	×	93.4	93.4	
REED [38]	×	95.0	92.3	
C2D-DivideMix [40]	×	93.8	93.4	
Sel-CL+ [18]	×	95.2	93.4	
GCE [11]	×	87.3	78.1	
RRL [17]	×	-	92.4	
Zhang, et al. [39]	· ·	92.7	90.2	
Meta-Learning [16]	V	-	88.6	
MSLC [9]	-	94.4	91.6	
DMLP-Naive	1	94.6	93.9	
DMLP-DivideMix	~	95.2	95.0	

Real-world Clothing1M

Table 3. Top-1 testing accuracy on Clothing-1M testset. "Validation" denotes using the validation provided by [31].

Method	Validation	Top-1 Accuracy
PENCIL [35]	×	73.49
DivideMix [15]	×	74.76
RRL [17]	×	74.90
GCE [11]	×	73.30
C2D-DivideMix [40]	×	74.30
REED [38]	×	75.81
Meta-Learning [16]	V	73.47
Self-Learning [13]	~	76.44
MLC [41]	~	75.78
MSLC [9]	~	74.02
Meta-Cleaner [10]	~	72.50
Meta-Weight [8]	~	73.72
FaMUS [34]	~	74.40
MSLG [7]	~	76.02
DMLP-Naive	V	77.77
DMLP-DivideMix	~	78.23

Generality of DMLP

Table 4. Comparison between the LNL methods and their DMLP applications with symmetric noise on CIFAR-10/100. Specifically, the 9-layer CNN is adopted as the backbone network of Co-teaching.

Dataset		CIFAR-10					CIFA	CIFAR-100			
Method/Noise ratio		20%	50%	80%	90%	20%	50%	80%	90%		
Co tooshing [12]	Best	82.6	73.0	24.0	14.6	50.5	38.2	11.8	4.9		
Co-teaching [12]	Last	81.9	72.6	23.5	11.7	50.3	38.0	11.3	4.3		
DMLP-Co-teaching	Best	85.8	85.8	85.4	84.6	51.2	49.8	48.1	45.3		
DMLP-Co-leacning	Last	85.6	85.6	85.3	84.5	51.0	49.3	47.8	45.1		
CDD 1201	Best	90.4	85.0	47.2	12.3	63.3	39.5	29.2	8.0		
CDR [30]	Last	82.7	49.4	16.6	10.1	62.9	39.5	9.7	4.5		
DMLP-CDR	Best	91.4	91.2	91.2	90.2	69.2	64.8	61.4	58.5		
DMLP-CDR	Last	91.2	90.8	90.6	89.3	68.3	64.3	61.1	57.9		
ELD - (10)	Best	94.6	93.8	91.1	75.2	77.5	72.4	58.2	30.8		
ELR+ [19]	Last	94.4	93.7	90.5	73.5	76.2	72.2	56.8	30.6		
DMI D ELD.	Best	94.9	94.1	93.0	92.5	77.8	73.6	63.9	60.5		
DMLP-ELR+	Last	94.6	94.0	92.7	92.1	77.1	73.4	63.6	60.5		

Component Analysis

Table 5. Ablation study for the effectiveness of IPC and EAC in DMLP-Naive on CIFAR-10.

Comp	onent			Clothing			
IPC	EAC		20%	50%	80%	90%	1 M
~		Best	93.7	93.3	91.1	67.4	76.5
X	\checkmark	Last	93.0	92.9	90.6	66.5	76.1
-	~	Best	87.8	85.7	79.9	76.0	76.8
√	×	Last	87.2	85.5	79.4	75.4	76.5
-	√	Best	94.7	94.2	93.5	92.8	77.7
V	V	Last	94.2	94.0	93.2	92.0	77.6

Comparison against other coupled purifiers with pre-training.

Table 6. Comparison with coupled meta label correction methods MLC [41] and MSLC [9] on CIFAR-10. "*" denotes training with SimCLR pretrained ResNet-18.

Madail			Noisy	ratio	
Method		20%	50%	80%	90%
MLC*	Best	91.8	86.2	77.6	72.9
WILC.	Last	91.6	85.9	77.5	72.6
MCI C*	Best	92.0	87.7	78.0	67.8
MSLC*	Last	92.0	87.5	77.9	67.3
DMDN: *	Best	94.0	93.7	93.1	92.3
DMLP-Naive*	Last	93.9	93.4	92.9	91.9
MI C* Divid-Min	Best	95.3	94.0	93.0	86.6
MLC*-DivideMix	Last	95.0	93.6	92.7	86.5
MSLC*-DivideMix	Best	95.7	94.9	93.8	83.0
WISLC*-DivideMix	Last	95.5	94.8	93.1	82.8
DMI D* Divid-Min	Best	96.3	95.6	94.1	93.8
DMLP*-DivideMix	Last	96.0	95.2	94.0	93.6

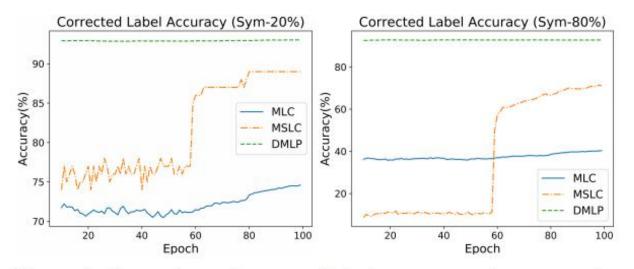


Figure 4. Comparison of corrected label accuracy under symmetric-20% (left), symmetric-80% (right) noise settings on CIFAR-10.

Effect of validation size

Table 7. Investigation of the validation set size τ on Clothing 1M.

au	10%	20%	30%	40%	50%	100%
Accuracy (%)	75.50	76.40	76.61	77.00	77.30	77.31

Effect of different feature representation for purification

Table 8. Ablation study for adopting different features in DMLP-Naive on CIFAR-10, where "R18/50" denote "ResNet-18/50" and "M/S" represent "MoCo/SimCLR".

Feature Source			Noisy	ratio	
Feature S	ource	20%	50%	80%	90%
R18 (M)	Best	93.8	93.3	92.2	90.4
K18 (M)	Last	93.7	92.7	92.1	90.0
D10 (C)	Best	94.0	93.7	93.1	92.3
R18 (S)	Last	93.9	93.4	92.9	91.9
D50 (C)	Best	94.7	94.2	93.5	92.8
R50 (S)	Last	94.2	94.0	93.2	92.0

Performance under extremely noisy setting

Table 9. Comparison between recent semi-supervised methods and DMLP-DivideMix on CIFAR-10/100 with 100% noisy ratio.

Method	CIFAR-10	CIFAR-100
MeanTeacher	83.0	31.0
MixMatch	87.9	57.7
FixMatch	88.1	56.3
UDA	88.2	56.1
Ours	91.7	60.1

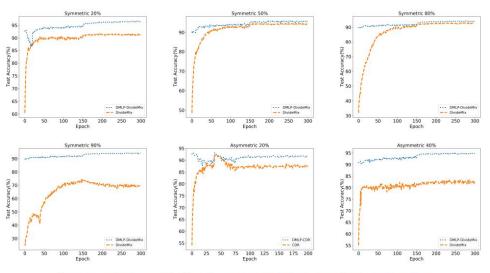


Figure 4. Accuracy curve of DMLP-DivideMix and DivideMix on CIFAR-10 under different noise settings.

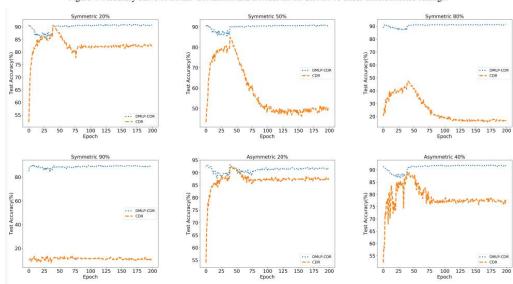
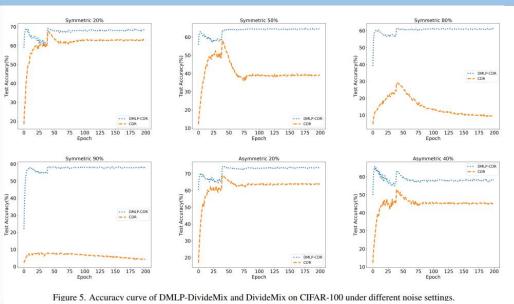


Figure 6. Accuracy curve of DMLP-CDR and CDR on CIFAR-10 under different noise settings.



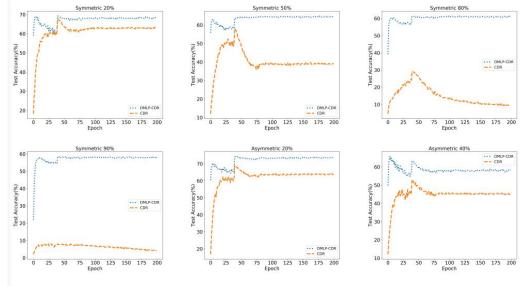


Figure 7. Accuracy curve of of DMLP-CDR and CDR on CIFAR-100 under different noise settings.

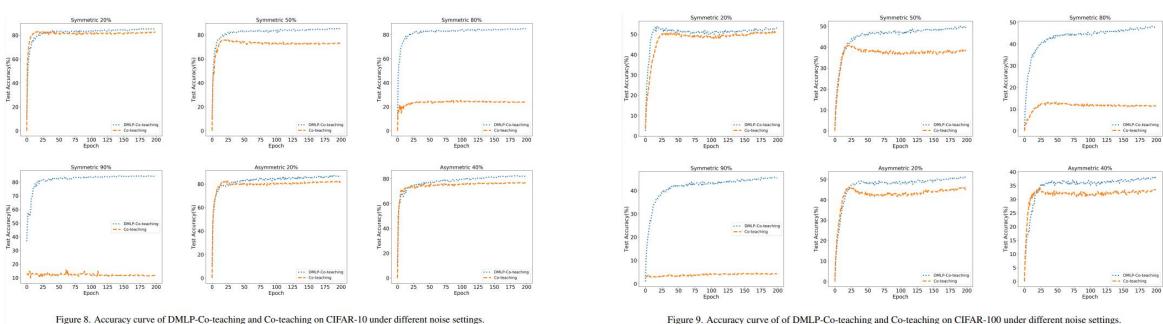


Figure 9. Accuracy curve of of DMLP-Co-teaching and Co-teaching on CIFAR-100 under different noise settings.

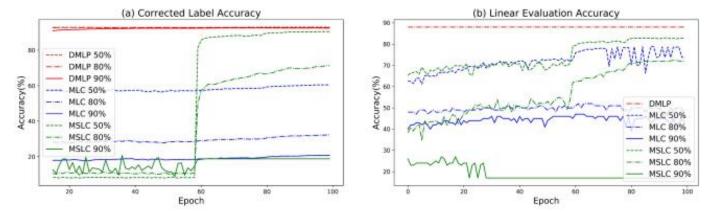


Figure 1. Comparison with two state-of-the-art coupled optimization based meta label correction methods MLC [25] and MSLC [6] on corrected label accuracy and linear evaluation accuracy.

Table 2. Comparison with MLC and MSLC on CIFAR-10/100. "†" denotes training with fixed self-supervised pretrained ResNet-18. "*" denotes training with self-supervised pretrained ResNet-18.

Dataset		CIFAR-10				CIFAR-100				
Method	Noise ratio	20%	50%	80%	90%	20%	50%	80%	90%	
MLC* DSI	Best	91.8	86.2	77.6	72.9	62.2	53.8	46.5	39.6	
MLC* [25]	Last	91.6	85.9	77.5	72.6	61.6	53.0	46.2	39.2	
MOT OF ICE	Best	92.0	87.7	78.0	67.8	70.8	64.1	36.4	19.8	
MSLC* [6]	Last	92.0	87.5	77.9	67.3	70.2	63.8	34.3	18.7	
MI of men	Best	92.0	90.2	89.0	88.9	65.9	59.4	54.4	54.2	
MLC [†] [25]	Last	91.6	89.4	88.5	88.1	65.2	59.2	54.1	54.0	
Mer of ro	Best	92.1	90.4	87.3	84.7	71.7	64.7	53.3	46.8	
MSLC [†] [6]	Last	92.0	90.0	87.2	84.2	71.6	64.4	53.0	46.4	
DAM B AL :	Best	94.7	94.2	93.5	92.8	72.7	68.0	63.5	61.3	
DMLP-Naive	Last	94.2	94.0	93.2	92.0	72.3	67.4	63.2	60.9	

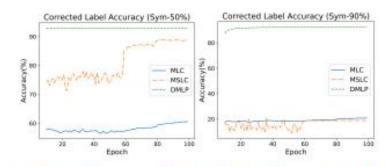


Figure 2. Comparison of corrected label accuracy curve under symmetric-50% (left), symmetric-90% (middle) noise settings on CIFAR-10.

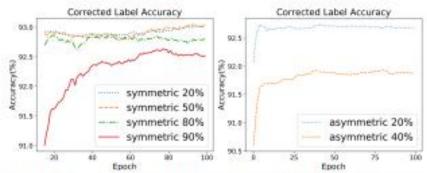


Figure 3. Corrected label accuracy curve of DMLP under symmetric (left), asymmetric (middle) noise settings on CIFAR-10.

Table 4. Comparison on CIFAR-10/100 with symmetric noise.

Dataset	CIFAR-10								
Method	20%	50%	80%	90%					
DMLP-Naive DMLP-DivideMix	94.28±0.10 96.20±0.11	94.02±0.21 95.63±0.13	93.31±0.19 94.22±0.14	92.16±0.20 93.97±0.22					
Dataset	CIFAR-100								
Method	20%	50%	80%	90%					
DMLP-Naive	72.39±0.08	67.60±0.26	63.17±0.14	61.09±0.20					
DMLP-DivideMix	79.31±0.21	76.11±0.10	68.42±0.12	65.55±0.23					

Learning from Noisy Labels with Decoupled Meta Label Purifier

Thanks for Watching!

https://github.com/yuanpengtu/DMLP

Yuanpeng Tu¹, Boshen Zhang², Yuxi Li², Liang Liu², Jian Li²,
Yabiao Wang², Chengjie Wang^{2,3†}, Cai Rong Zhao^{1†}

1 Tongji University, 2 Tencent Youtu Lab, 3 Shanghai Jiao Tong University
Corresponding authors. Email: zhaocairong@tongji.edu.cn, jasoncjwang@tencent.com