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Problem Formulation 

Input
Video consisting of past frames 

(without action labels)

F0                …                Ft

Output
Predicted action at a 
predetermined time tf 

after the present

𝑤𝑎𝑠ℎ	𝑘𝑛𝑖𝑓𝑒
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Real-time Evaluation
• Takes model latency into account

Offline Evaluation
• Ignores model latency
• Uses all video data up to present 

time T to predict the future

• Model can only use video data up to 
time T – tlatency to predict

• Forces prediction to arrive at time T
We propose RAFTformer, a novel action 

anticipation transformer that balances high 
performance with low latency



Results: Offline Setting
All past frames up to the present time T 

are used to predict the action at time T + tf

~9x less 
latency

~94% less 
GPU hours

State-of-the-art
results

~8x less 
parameters



Results: Online Setting
0 T T + 1T + ttheirsT + ttheirs- tours



Offline Forecasting Evaluation: Shortcomings
Forecasting models often must be done in real time. 

But current good forecasting models have high latency.

t = 0 t = T

Observed Past Inference Latency

t = T+tf

Prediction arrival time

The latency can even be so 
high that the model furnishes 

predictions after the future 
action has already happened



Real-time Action Forecasting Evaluation 

Real-time Evaluation
• Takes model latency into account

Offline Evaluation
• Ignores model latency
• Uses all video data up to present 

time T to predict the future

• Model can only use video data up to 
time T – tlatency to predict

• Forces prediction to arrive at time T

• Tradeoff between latency and real-time performance. Larger models can lead to 
poorer real-time performance. 



Bigger is not necessarily better in real-time!



RAFTformer Architecture 



RAFTformer Architecture 

Short-term video backbone that processes video clips Ci to extract clip-
level features Ei. 



RAFTformer Architecture 

Add absolute position encodings 
to embeddings and shuffle them



RAFTformer Architecture 

Shuffling: we don’t want to learn fixed 
unidimensional dependencies, but rather 
bidirectional dependencies between any 
two subsets of embeddings.
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Without shuffling, a model using causal attention masking can only 
learn sequential unidimensional dependencies.
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Shuffling tokens carefully* allows the model to learn bidirectional 
dependencies between any two token subsets.

*requires careful changes to masked attention to ensure no multi-hop information leakage through self-attention layers. 
Please see paper for details.
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Encoding Permutation π

Goal: We want RAFTformer encoder to “know” sampled permutation π*,
          so we want to embed π* vectorially for use in the encoder. 



Encoding Permutation π

L! of these 

π1: vector 1

π2: vector 2

Different permutations

Method: Assign each π a single learnable vector
L! unique embeddings needed to encode all possible permutations π
(one for each permutation)

2 3 1

… 

3 1 2

Naïve Method
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Emb 6

L(L-1) unique embeddings
2

2

3

3 2

π1:  {Emb 5, Emb 1}

π2: {Emb 4, Emb 5}

Method: Encode each π as a set of predecessor à successor relationships.
L(L-1) unique embeddings needed to encode all possible permutations π
(one for each pair iàj)

1

2 3 1

… 

3 1 21 1

Encoding Permutation π
Predecessor Successor Method



L unique embeddings
1

2

3

Emb 1
Emb 2

Emb 3

π1:  {Emb 1, Emb 2}

π2: {Emb 3, Emb 1}

Encoding Permutation π

2 3 1

… 

3 1 2

πPE Method
Method: Encode only the successor PE in the permuted π* (predecessor is 
already encoded through Absolute PE)
L(L-1) unique embeddings needed to encode all possible permutations π
(one for each i)



Illustration of πPE

πPE is the encoding of the original temporal 
position of the successor in the permuted 
sequence

The last token adds πPEfut, which is used to 
help generate the “future token”



RAFTformer Architecture 

This (together with APE) encodes the 
sampled permutation uniquely.



RAFTformer Architecture 

ad
Transformer encoder model with 
causal attention masking, post-
normalization, and ReLU activations

*RAFTformer encoder has a special form of masked attention that prevents information leakage under shuffling. 
Please see paper for details.



RAFTformer Architecture 

Anticipation Tokens aggregate global context and later is decoded into 
future predictions. Each anticipation token attends to different past 
video lengths and produces forecasts for different time horizons.



RAFTformer Architecture 

Short-term and long-term head decode 
anticipation tokens into predicted future 
action distribution



RAFTformer Architecture 

Short-term and long-term head decode 
anticipation tokens into predicted future 
action distribution

Feature prediction head upsamples 
encoded tokens to original 
representation space of input tokens to 
allow for self-supervision loss.



RAFTformer Architecture 

• pi is the predicted probability for the correct class for the ith example
• Ai represents predictions from a specific anticipation token
• Higher γ results in increased penalty for hard, misclassified examples
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RAFTformer Architecture 
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Results: Online Setting
0 T T + 1

Base models are given a video up to time T, which 
they used to predict the action at time T+1



Results: Online Setting
0 T T + 1

With a latency of ttheirs, the prediction will arrive at 
time T + ttheirs 

T + ttheirs



Results: Online Setting
0 T T + 1

When comparing two models, the prediction arrival times 
should be the same. With a latency of tours, RAFTFormer 
must start prediction at time T + ttheirs - tours so that the 
prediction arrives at time T + ttheirs

T + ttheirsT + ttheirs- tours
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Thank You! 
     For full results on all datasets, paper, code and further details 
           please visit the project homepage

https://karttikeya.github.io/publication/RAFTformer/
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