
Latency Matters: Real-Time
Action Forecasting Transformer

Karttikeya
Mangalam*

Harshayu
Girase*

Nakul
Agarwal

Chiho
Choi

*denotes equal technical contribution

Poster Session THU-AM-218

Problem Formulation

Input
Video consisting of past frames

(without action labels)

F0 … Ft

Output
Predicted action at a
predetermined time tf

after the present

𝑤𝑎𝑠ℎ	𝑘𝑛𝑖𝑓𝑒

Real-time Action Forecasting Evaluation

Offline Evaluation
• Ignores model latency
• Uses all video data up to present

time T to predict the future

Real-time Action Forecasting Evaluation

Real-time Evaluation
• Takes model latency into account

Offline Evaluation
• Ignores model latency
• Uses all video data up to present

time T to predict the future

• Model can only use video data up to
time T – tlatency to predict

• Forces prediction to arrive at time T

Real-time Action Forecasting Evaluation

Real-time Evaluation
• Takes model latency into account

Offline Evaluation
• Ignores model latency
• Uses all video data up to present

time T to predict the future

• Model can only use video data up to
time T – tlatency to predict

• Forces prediction to arrive at time T
We propose RAFTformer, a novel action

anticipation transformer that balances high
performance with low latency

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

~9x less
latency

~94% less
GPU hours

State-of-the-art
results

~8x less
parameters

Results: Online Setting
0 T T + 1T + ttheirsT + ttheirs- tours

Offline Forecasting Evaluation: Shortcomings
Forecasting models often must be done in real time.

But current good forecasting models have high latency.

t = 0 t = T

Observed Past Inference Latency

t = T+tf

Prediction arrival time

The latency can even be so
high that the model furnishes

predictions after the future
action has already happened

Real-time Action Forecasting Evaluation

Real-time Evaluation
• Takes model latency into account

Offline Evaluation
• Ignores model latency
• Uses all video data up to present

time T to predict the future

• Model can only use video data up to
time T – tlatency to predict

• Forces prediction to arrive at time T

• Tradeoff between latency and real-time performance. Larger models can lead to
poorer real-time performance.

Bigger is not necessarily better in real-time!

RAFTformer Architecture

RAFTformer Architecture

Short-term video backbone that processes video clips Ci to extract clip-
level features Ei.

RAFTformer Architecture

Add absolute position encodings
to embeddings and shuffle them

RAFTformer Architecture

Shuffling: we don’t want to learn fixed
unidimensional dependencies, but rather
bidirectional dependencies between any
two subsets of embeddings.

Why Do Shuffling?
Without shuffling, a model using causal attention masking can only
learn sequential unidimensional dependencies.

#3 #4#1 #2

Why Do Shuffling?
Without shuffling, a model using causal attention masking can only
learn sequential unidimensional dependencies.

#3 #4#1 #2

Why Do Shuffling?
Without shuffling, a model using causal attention masking can only
learn sequential unidimensional dependencies.

#3 #4#1 #2

Why Do Shuffling?

#3 #4#1 #2

Shuffling tokens carefully* allows the model to learn bidirectional
dependencies between any two token subsets.

*requires careful changes to masked attention to ensure no multi-hop information leakage through self-attention layers.
Please see paper for details.

Why Do Shuffling?

#3 #4#1 #2

Shuffling tokens carefully* allows the model to learn bidirectional
dependencies between any two token subsets.

*requires careful changes to masked attention to ensure no multi-hop information leakage through self-attention layers.
Please see paper for details.

Why Do Shuffling?

#3 #4#1 #2

Shuffling tokens carefully* allows the model to learn bidirectional
dependencies between any two token subsets.

*requires careful changes to masked attention to ensure no multi-hop information leakage through self-attention layers.
Please see paper for details.

Encoding Permutation π

Goal: We want RAFTformer encoder to “know” sampled permutation π*,
 so we want to embed π* vectorially for use in the encoder.

Encoding Permutation π

L! of these

π1: vector 1

π2: vector 2

Different permutations

Method: Assign each π a single learnable vector
L! unique embeddings needed to encode all possible permutations π
(one for each permutation)

2 3 1

…

3 1 2

Naïve Method

2

3
Emb 1
1
Emb 2

3
Emb 3

Emb 4

Emb 5

Emb 6

L(L-1) unique embeddings
2

2

3

3 2

π1: {Emb 5, Emb 1}

π2: {Emb 4, Emb 5}

Method: Encode each π as a set of predecessor à successor relationships.
L(L-1) unique embeddings needed to encode all possible permutations π
(one for each pair iàj)

1

2 3 1

…

3 1 21 1

Encoding Permutation π
Predecessor Successor Method

L unique embeddings
1

2

3

Emb 1
Emb 2

Emb 3

π1: {Emb 1, Emb 2}

π2: {Emb 3, Emb 1}

Encoding Permutation π

2 3 1

…

3 1 2

πPE Method
Method: Encode only the successor PE in the permuted π* (predecessor is
already encoded through Absolute PE)
L(L-1) unique embeddings needed to encode all possible permutations π
(one for each i)

Illustration of πPE

πPE is the encoding of the original temporal
position of the successor in the permuted
sequence

The last token adds πPEfut, which is used to
help generate the “future token”

RAFTformer Architecture

This (together with APE) encodes the
sampled permutation uniquely.

RAFTformer Architecture

ad
Transformer encoder model with
causal attention masking, post-
normalization, and ReLU activations

*RAFTformer encoder has a special form of masked attention that prevents information leakage under shuffling.
Please see paper for details.

RAFTformer Architecture

Anticipation Tokens aggregate global context and later is decoded into
future predictions. Each anticipation token attends to different past
video lengths and produces forecasts for different time horizons.

RAFTformer Architecture

Short-term and long-term head decode
anticipation tokens into predicted future
action distribution

RAFTformer Architecture

Short-term and long-term head decode
anticipation tokens into predicted future
action distribution

Feature prediction head upsamples
encoded tokens to original
representation space of input tokens to
allow for self-supervision loss.

RAFTformer Architecture

• pi is the predicted probability for the correct class for the ith example
• Ai represents predictions from a specific anticipation token
• Higher γ results in increased penalty for hard, misclassified examples

𝐿!"#$% = #
&!∈&

#
()*

+

− 1 − 𝑝&!
, 𝑙𝑜𝑔 𝑝&!

𝐿 = 𝐿+,-./ + λ0𝐿123 + λ4𝐿+56578

RAFTformer Architecture

• pi is the predicted probability for the correct class for the ith example
• Ai represents predictions from a specific anticipation token
• Higher γ results in increased penalty for hard, misclassified examples

𝐿!"#$% = #
&!∈&

#
()*

+

− 1 − 𝑝&!
, 𝑙𝑜𝑔 𝑝&!

𝐿 = 𝐿+,-./ + λ0𝐿123 + λ4𝐿+56578

Future token prediction loss

Loss between original and predicted clip embeddings after the shuffle

RAFTformer Architecture

• pi is the predicted probability for the correct class for the ith example
• Ai represents predictions from a specific anticipation token
• Higher γ results in increased penalty for hard, misclassified examples

𝐿!"#$% = #
&!∈&

#
()*

+

− 1 − 𝑝&!
, 𝑙𝑜𝑔 𝑝&!

𝐿 = 𝐿+,-./ + λ0𝐿123 + λ4𝐿+56578

Future token prediction loss

Loss between original and predicted clip embeddings after the shuffle

RAFTformer Architecture

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

State-of-the-art
results

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

~8x less
parameters

State-of-the-art
results

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

~94% less
GPU hours

State-of-the-art
results

~8x less
parameters

Results: Offline Setting
All past frames up to the present time T

are used to predict the action at time T + tf

~9x less
latency

~94% less
GPU hours

State-of-the-art
results

~8x less
parameters

Results: Online Setting
0 T T + 1

Base models are given a video up to time T, which
they used to predict the action at time T+1

Results: Online Setting
0 T T + 1

With a latency of ttheirs, the prediction will arrive at
time T + ttheirs

T + ttheirs

Results: Online Setting
0 T T + 1

When comparing two models, the prediction arrival times
should be the same. With a latency of tours, RAFTFormer
must start prediction at time T + ttheirs - tours so that the
prediction arrives at time T + ttheirs

T + ttheirsT + ttheirs- tours

Results: Online Setting
0 T T + 1T + ttheirsT + ttheirs- tours

Results: Online Setting
0 T T + 1T + ttheirsT + ttheirs- tours

Results: Online Setting
0 T T + 1T + ttheirsT + ttheirs- tours

Thank You!
 For full results on all datasets, paper, code and further details
 please visit the project homepage

https://karttikeya.github.io/publication/RAFTformer/

Latency Matters: Real-Time
Action Forecasting Transformer

https://karttikeya.github.io/publication/RAFTformer/

