

Semi-supervised Parametric Real-world Image Harmonization

Ke Wang^{1,2}, Michaël Gharbi¹, He Zhang¹, Zhihao Xia¹, Eli Shechtman¹

¹Adobe Inc ²UC Berkeley, EECS TUE-PM-172 #8236

Image composition and harmonization

Composite image

Image Harmonization Harmonized image

Previous works: Train harmonization from synthetic composites

during training

Composite image Paste

during testing

- Domain gaps between training and testing
- Only perform global harmonization

Our contributions

Semi-supervised Parametric Real-world image harmonization

- Bridge the domain gaps through training on real composites.
- High-res harmonization with parametric controls (color and shading).
- First approach enables **local harmonization** (through shading map).

Outperforms SOTA methods

[1] Cong et al. 2020 [2] Guo et al. 2021 [3] Ke et al. 2022

Why not training on synthetic composites

- Same foreground/background lighting, smooth boundary, consistent shading.
- Unnatural adjustments degrade harmonization performance.
- Only global harmonization. (e.g., color, luminosity)

Ours: learn image harmonization from real composites.

Dual-stream training strategy

Sampled 50%

Supervised training stream on *Artist-retouched* dataset

Sampled 50%

Supervised training stream

Supervised training stream on Artist-retouched dataset

Sampled 50%

Supervised training stream on Artist-retouched dataset

Image: Supervised training stream on Real composites

Image: Supervised training stream on Real composites

Image: Supervised training stream on Real composites

Previous works

- Unnatural adjustments.
- ××
- Only global adjustments.

Ours

- Natural Artist adjustments.
- Both global and local edits.

Unsupervised training stream

Unsupervised training stream on Real composites

Generate real composite

Previous works

 Trained solely on synthetic composites.

Ours

- Trained on both synthetic and real composites.
- Bridge domain gaps and enable local harmonization.

 \mathcal{L}_{adv} is only adversarial loss enough?

Parametric model regularizes adversarial training

1. Color curves and shading map can scale up to any resolution.

2. Provide user full parametric controls.

Visualization results on modeling local tonal changes

[1] Cong et al. 2020 [2] Guo et al. 2021 [3] Ke et al. 2022

Better agreements with ground truth

[1] Cong et al. 2020 [2] Guo et al. 2021 [3] Ke et al. 2022

Visualization of parametric controls

Composite

Intermediate results (global curves)

Shading map

Final results (curves + shading map)

Quantitatively outperform SOTA methods

Dataset	Method	MSE	PSNR	SSIM $\times 10^{-2}$	LPIPS $\times 10^{-3}$
<i>Artist-</i> <i>Retouched</i> dataset	Composite	603.2	23.41	91.19	40.18
	DovNet	352.4	26.42	90.83	56.47
	IHT	369.3	26.36	90.87	55.80
	Harmonizer	239.1	29.42	93.84	33.75
	Ours	170.1	29.79	94.56	29.18
RealHM	Composite	404.4	25.88	94.70	29.32
	DovNet	225.1	26.72	92.00	47.50
	IHT	264.0	26.48	92.46	48.48
	Harmonizer	231.4	27.40	94.86	27.62
	Ours	153.3	28.34	95.51	23.09

Methods	B-T score		
Composite	0.1025		
DovNet	0.1342		
IHT	0.2350		
Harmonizer	0.2257		
Ours	0.3025		

User study results

Metric comparisons

Demo – parametric controls enable **Creativities**!

Conclusions

Semi-supervised Parametric Real-world image harmonization

- Bridge the domain gap through training on real composites.
- First approach enables **local harmonization** (through shading map).
- High-res harmonization with parametric controls (color and shading).
- Outperform SOTA methods both quantitatively and qualitatively.

Thanks for your attention! Email: kewang@berkeley.edu

