

Improving Visual Grounding by Encouraging Consistent **Gradient-based Explanations**

Ziyan Yang*

Kushal Kafle [#]

CVPR 2023

Session & Poster ID: THU-AM-256

Arxiv: https://arxiv.org/abs/2206.15462 Code: https://github.com/uvavision/AMC-grounding Demo: https://vislang.ai/amc

Franck Dernoncourt [®]

Vicente Ordonez*

Overview

Input Image + Text

Regular V-L Model Explanation

A picture of a cathedral next to a park

Attention Map Consistency (AMC)

Human Explanation

Visual Grounding

• Locate the most relevant region corresponding to a given query

a cat is sitting under a red umbrella

Visual Grounding

Object Detectors Annotations: bounding boxes

a cat under an umbrella

Visual Grounding

a cat under an umbrella

Vision-Language Models Annotations: bounding boxes

Pre-trained VLMs

• Encoder-Decoder: ALBEF

- Pretraining from ALBEF
- Assume each sample has: V, T

- Pretraining from ALBEF
- Assume each sample has: V, T

- Pretraining from ALBEF
- Assume each sample has: V, T, M

- Pretraining from ALBEF
- Assume each sample has: V, T, M

- Pretraining from ALBEF
- Assume each sample has: V, T, M

$$\mathcal{L}_{\text{mean}} = \max\left(0, \ \frac{1}{\sum_{i,j}(1-M_{i,j})} \sum_{i,j} \left((1-M_{i,j}) A_{i,j}\right) - \frac{1}{\sum_{i,j} M_{i,j}} \sum_{i,j} M_{i,j} A_{i,j} + \right)\right)$$

- Pretraining from ALBEF
- Assume each sample has: V, T, M

$$\mathcal{L}_{ ext{mean}} = ext{max}\left(0, \ rac{1}{\sum_{i,j}(1-M_{i,j})}\sum_{i,j}\left(\left(1-M_{i,j}
ight)A_{i,j}
ight) - rac{1}{\sum_{i,j}M_{i,j}}\sum_{i,j}M_{i,j}A_{i,j} +
ight)$$

- Pretraining from ALBEF
- Assume each sample has: V, T, M

$$\mathcal{L}_{\text{mean}} = \max\left(0, \frac{1}{\sum_{i,j}(1-M_{i,j})} \sum_{i,j} \left((1-M_{i,j})A_{i,j}\right) - \frac{1}{\sum_{i,j}M_{i,j}} \sum_{i,j}M_{i,j}A_{i,j} + \right)\right)$$

- Pretraining from ALBEF
- Assume each sample has: V, T, M

$$\mathcal{L}_{\max} = \max\left(0, \ \max_{i,j} \left(\left(1 - M_{i,j}\right) A_{i,j}\right) - \max_{i,j} M_{i,j} A_{i,j} + \Delta_2 \right)$$

- Pretraining from ALBEF
- Assume each sample has: V, T, M

$\mathcal{L}_{amc} = \lambda_1 \cdot \mathcal{L}_{mean} + \lambda_2 \cdot \mathcal{L}_{max}$

Experiments

- Training Data:
 - Visual Genome
- Evaluation Data:
 - Flickr30k
 - RefCOCO+
- Evaluation metric:
 - Pointing Game Accuracy

A sitting asian male wearing a yellow shirt with a skateboard

Results

					Method	VG-Boxes	Backbone	Flickr30k
Method	Detector	Flickr30k	RefCO	DCO+	gALBEF [17]	no	ALBEF	79.14
			test A	test B	GbS [3]	no	PNASNet	73.39
Align2Ground [7]	Faster-RCNN (VG)	71.00	-	-	MG [1]	no	ELMo + PNASNet	67.60
12-in-1 [23]	Faster-RCNN (VG)	76.40	-	-	GAE [5]	no	CLIP	72.47
InfoGround [11]	Faster-RCNN (VG)	76.74	39.80	41.11	WWbL [33]	no	CLIP + VGG	75.63
VMRM [10]	Faster-RCNN (VG)	81.11	58.87	50.32	GbS+IG [3]	yes	PNASNet	83.40
AMC*	_	86.49	78.89	61.16	GbS+12-in-1 [3] yes	PNASNet	85.90
AMC (ours)	—	86.59	80.34	64.55	AMC (ours)	yes	ALBEF	86.59

 Table 1: Visual Grounding results using pointing game

 accuracy against methods that use different object detectors trained on Visual Genome box annotations.

 Table 2: Visual Grounding results using pointing game

 accuracy against methods that do not use object detectors or Visual Genome box supervision

Results

a woman with tattoo

Demo: https://vislang.ai/amc

Tree branches in the background

A red flower

