

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

AdaptiveMix: Improving GAN Training via Feature Space Shrinkage

Haozhe Liu ^{#1}, Wentian Zhang ^{#2}, Bing Li ^{*1}, Haoqian Wu ³, Nanjun He ², Yawen Huang ², Yuexiang Li ^{*2}, Bernard Ghanem ¹, Yefeng Zheng ²

Joint First Author * Corresponding Author

¹ AI Initiative, King Abdullah University of Science and Technology (KAUST)
² Jarvis Lab, Tencent, ³ YouTu Lab, Tencent

Outline

01	AdaptiveMix				
02	AdaptiveMix on Image Generation				
03	AdaptiveMix on Visual Recognition				
04	Conclusion				

AdaptiveMix

1. Generate Hard Samples

Given x_i , x_j and Feature Extractor $\mathcal{F}(\cdot)$

$$\hat{x}_{ij} = \lambda x_i + (1 - \lambda) x_j$$

$$v_i = \mathcal{F}(x_i) \quad v_j = \mathcal{F}(x_j) \quad \hat{v}_{ij} = \mathcal{F}(\hat{x}_{ij})$$

2. AdaptiveMix Loss

$$\mathcal{L}_{ada} = \sum_{i} \sum_{j} \mathbb{D}_{v} (\lambda \mathcal{F}(x_{i}) + (1 - \lambda) \mathcal{F}(x_{j}), \mathcal{F}(\hat{x}_{ij}) + \sigma)$$

 $\mathbb{D}_{v}(\cdot)$ computes the $L_{1}(L_{2})$ distance

AdaptiveMix on Image Generation

The **learning objective** of AdaptiveMix based image generation:

$$\min_{G} \max_{\mathcal{F}, \mathcal{J}x \sim p_r} \mathbb{E}[\mathcal{J}(\mathcal{F}(x))] - \mathbb{E}_{z \sim p_z} [\mathcal{J}(\mathcal{F}(G(z)))] + \min_{\mathcal{F}} \mathbb{E}_{x \sim p_r, p_g} [\mathcal{L}_{ada}]$$

AdaptiveMix Loss
$$\mathcal{L}_{ada} = \sum_{i} \sum_{j} \mathbb{D}_{v} (\lambda \mathcal{F}(x_{i}) + (1 - \lambda) \mathcal{F}(x_{j}), \mathcal{F}(\hat{x}_{ij}) + \sigma),$$

Discriminator is consisting of feature extractor $\mathcal{F}(\cdot)$ and classifier head $\mathcal{J}(\cdot)$

AdaptiveMix on Image Generation

FIDs of DCGAN using various learning objectives

Learning Objective	CIFAR-10	CelebA
WGAN [1] (ICML'17)	55.96	-
HingeGAN [58] (ICLR'17)	42.40	25.57
LSGAN [33] (ICCV'17)	42.01	30.76
DCGAN [37] (ICLR'16)	38.56	27.02
WGAN-GP [6] (NIPS'17)	41.86	70.28
Re-implemented WGAN-GP	38.63	70.16
Realness GAN-Obj.1 [47] (ICLR'2020)	36.73	-
Realness GAN-Obj.2 [47] (ICLR'2020)	34.59	23.51
Realness GAN-Obj.3 [47] (ICLR'2020)	36.21	-
AdaptiveMix (Ours)	30.85	12.43

The proposed method for StyleGAN-V2

Method	AFHQ	-Cat-5k	FFHQ (Full)		
Wethod	FID	IS	FID	IS	
StyleGAN-V2 [20] (CVPR'20)	7.737	1.825	3.862	5.243	
StyleGAN-V2 (Re-Impl.)	7.924	1.890	3.810	5.185	
LC-Reg [43] (CVPR'21)	6.699	1.943	3.933	5.312	
Style GAN-V2 + Ours	4.477	1.972	3.623	5.222	
ADA [17] (NIPS'20)	6.053	2.119	4.018	5.329	
ADA (Re-Impl.)	5.582	2.059	3.713	5.200	
ADA + Ours	4.680	2.069	3.681	5.335	
APA [15] (NIPS'2021)	4.876	2.156	3.678	5.336	
APA (Re-Impl.)	4.645	2.093	3.752	5.281	
APA+Ours	4.148	2.096	3.609	5.296	

The experimental results on a synthetic data set

(a) Mixed Gaussian Distributions

(b) Mixed Circle Lines

AdaptiveMix on Image Generation

StyleGAN-V2

StyleGAN-V2 + AdaptiveMix

AdaptiveMix on Visual Recognition

Image Classification

(1) Given samples and their labels $(x_i, y_i), (x_j, y_j) \sim (\mathcal{X}, \mathcal{Y})$

(2) Generate hard samples $\hat{x}_{ij} = g(x_i, x_j, \lambda)$ $\hat{y}_{ij} = g(y_i, y_j, \lambda)$ $(\hat{x}_{ij} = g(x_i, x_j, \lambda) = \lambda x_i + (1 - \lambda) x_j)$ (3) Input samples to feature extractor $v_i, v_j, \hat{v}_{ij} \leftarrow \mathcal{F}(x_i), \mathcal{F}(x_j), \mathcal{F}(\hat{x}_{ij})$

(4) Given an orthogonal classifier $\tilde{\mathcal{J}}(\cdot)$

The learning objective of AdaptiveMix based image classification:

$$\mathcal{L}_{t} = \hat{y}_{ij} log(\tilde{\mathcal{J}}(\mathcal{F}(\hat{x}_{ij}))) + \hat{y}_{ij} log(\tilde{\mathcal{J}}(g(v_{i}, v_{j}, \lambda))) + \mathcal{L}_{ada})$$

Image OOD Detection

Given a test sample x_t , the probability ϕ_t that x_t is OOD is calculated as:

$$\phi_t = \min_k \arccos(\frac{|\mathcal{F}^T(x_t)v_k^*|}{||\mathcal{F}(x_t)||}),$$

Robust Image Recognition

Table 7. Accuracy (%) on CIFAR-10 based on WRN-28-10 trained with the various methods with orthogonal classifier (Orth.).

CIEAD10	FGSM	PGD-8	PGD-16	CW-100	CW-100
CIFAKIU	(8/255)	(4/255)	(4/255)	(c=0.01)	(c=0.05)
Baseline	38.03	0.92	0.28	11.1	0.39
Mixup [54]	60.17	3.97	1.16	30.32	2.36
Orth. + Mixup	44.80	3.99	2.66	71.12	49.47
MMixup [44]	59.32	7.97	2.97	51.47	11.12
Orth. + MMixup	38.76	5.77	4.38	69.08	53.98
Ours	74.18	32.12	22.12	81.39	74.72

Table 8. Accuracy (%) on CIFAR-100 and Tiny-ImageNet against various adversarial attacks based on WRN-28-10 [53] and PreActResNet-18 [9] respectively.

Dataset	Method	FGSM	PGD-8	PGD-16	CW-100	CW-100
		(8/255)	(4/255)	(4/255)	(c=0.01)	(c=0.05)
	Baseline	11.71	0.79	0.42	4.42	0.23
C 100	Mixup [54]	27.34	0.28	0.11	4.83	0.28
C-100	MMixup [44]	29.73	1.19	0.49	10.75	0.77
	Ours	24.28	8.22	7.40	42.02	26.18
	Baseline	4.26	0.81	0.60	27.92	7.52
T-ImageNet	Mixup [54]	4.23	0.98	0.77	29.13	15.41
	MMixup [44]	3.04	0.82	0.59	29.69	16.86
	Ours	7.10	4.66	4.98	35.93	34.22

Clean Image Recognition

Table 11. Accuracy (%) of the proposed AdaptiveMix on varying baselines and datasets. Res. stands for resolution of the input.

Dataset	Architecture	Res.	Baseline	Ours
CIFAR-10	WRN-28-10 [53]	32^2	96.11	96.80
CIFAR-100	WRN-28-10 [53]	322	80.82	82.02
T-ImageNet	PreActResNet-18 [9]	64 ²	57.23	60.59
ImageNet	ResNet-50 [8]	128^{2}	67.38	68.69

OOD Detection

Table 12. OOD detection on various OOD sets, where TIN-C, TIN-R, LSUN-C, and LSUN-R refer to the OOD set of Tiny ImageNet-Crop, Tiny ImageNet-Resize, LSUN-Crop, and LSUN-Resize, respectively. All values are F1 score (\uparrow), \dagger stands for the result reproduced by the open-source code.

ID Dataset	CIFAR10				
OOD Dataset	TIN-C	TIN-R	LSUN-C	LSUN-R	
Methods usir	ng MC s	ampling	ç.		
1DS [52] (CVPR'21)	0.930	0.936	0.962	0.961	
Methods which adopt OOD san	ples for	r validat	ion and fir	ne-tuning	
ODIN [26] (ICLR'18)	0.902	0.926	0.894	0.937	
Mahalanobis [24] (NIPS'18)	0.985	0.969	0.985	0.975	
Soft. Pred. [10] (ICLR'17)	0.803	0.807	0.794	0.815	
Counterfactual [36] (ECCV'18)	0.636	0.635	0.650	0.648	
CROSR [49] (CVPR'19)	0.733	0.763	0.714	0.731	
OLTR [32] (CVPR'19)	0.860	0.852	0.877	0.877	
1DS w/o MC † [52]	0.890	0.886	0.897	0.907	
1DS w/o MC † +Ours	0.922	0.911	0.934	0.937	

Conclusion

- 1. We propose a novel module, namely AdaptiveMix, to improve the training of GANs. Our AdaptiveMix is simple yet effective and plug-and-play, which is helpful for GANs to generate high-quality images.
- 2. We show that GANs can be stably and efficiently trained by shrinking regions of training data in image representation supported by the discriminator.
- 3. We show our AdaptiveMix can be applied to not only image generation, but also OOD and robust image classification tasks. Extensive experiments show that our AdaptiveMix consistently boosts the performance of baselines for four different tasks (*e.g.*, OOD) on seven widely-used datasets.

Thank you for listening!