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AdaptiveMix on Image Generation

� 2 B(↵,↵). As shown in Fig. 2, mixed sample x̂ij is
more confusing and difficult for networks to discriminate,
compared with original training samples xi and xj . With-
out loss of generalization, we refer to an original training
sample xi as an easy sample, and x̂ij as a hard one. Note
that hard sample x̂ij does not belong to a new class but be-
longs partially to the class of xi and partially to that of xj ,
according to the � value used in Eq. 1.
AdaptiveMix Loss. Our AdaptiveMix reduces the distance
between a hard sample x̂ij and its corresponding easy ones
xi and xj in the representation space represented by feature
extractor F(·), in order to shrink regions of training data of
classes that xi or xj belongs to. Note that we propose a soft
loss, since hard sample x̂ij does not completely belong to
the class of xi or xj . We reduce the distance between x̂ij

and xi in the feature space according to the proportion of xi

in x̂ij in the linear combination:

Lada=
X

i

X

j

Dv(�F(xi)+(1� �)F(xj),F(x̂ij)+�),

(2)

where � is a noise term sampled from Gaussian distribution
to prevent over-fitting and Dv(·, ·) refers to the metric to
evaluate the distance, like L1 norm, L2 norm. Note that our
AdaptiveMix does not need labels of training images; how-
ever, it is able to shrink the regions of training data for each
class in the feature space (see Fig. 2), since easy sample xi

and its associated hard one x̂ij belong to the same class.

3.2. Connections to Lipschitz Continuity

To further investigate the superiority of our method, we
theoretically analyze the relationship between the proposed
AdaptiveMix and Lipschitz continuity.

Preliminary. In the proposed method, the feature extractor
F(·) connects the input space X and the embedding space
V . Given two evaluation metrics Dx(·, ·) and Dv(·, ·) de-
fined on X and V , respectively, F(·) fulfills Lipschitz con-
tinuity if a real constant K exists to ensure all xi, xj 2 X
meet the following condition:

KDx(xi, xj) � Dv(F(xi),F(xj)). (3)

Proposition. Based on the analysis in [3, 44], a flat embed-
ding space, especially with Lipschitz continuity, is an ideal
solution against unstable training and adversarial attack.
Hence, the effectiveness of the proposed method can be jus-
tified by proving the equivalence between AdaptiveMix and
K-Lipschitz continuity.

Theorem. Towards any K of Lipschitz continuity, Adap-
tiveMix is an approximate solution under L1 norm metric
space.

Proof. Given xi and xj sampled from X , their convex com-
bination based pivot x̂ij can be obtained via g(xi, xj ,�).
Since x̂ij can be regarded as a sample in X , we can trans-
form Lipschitz continuity (Eq. (3)) to

KB =K(Dx(x̂ij ,�xi) + Dx(x̂ij , (1� �)xj))

� Dv(v̂ij ,�vi) + Dv(v̂ij , (1� �)�vj)

� Dv(v̂ij , g(vi, vj ,�))

(4)

where E[�] = 0.5 and E[xi] = E[xj ]. Hence the upper
bound B can be estimated as 0 through mini-batch training.
As Dv(·, ·) is an L1-norm distance, Dv(·, ·) should be no
less than 0. Hence, we can get the lower and upper bound
of Dv(v̂ij , g(vi, vj ,�)) within Lipschitz continuity:

E[0]  E[Dv(v̂ij , g(vi, vj ,�)))]  E[KB] = 0. (5)

Therefore, if F is under the Lipschitz continuity,
Dv(v̂ij , g(vi, vj ,�))) should be zero, and the optimal result
of AdaptiveMix is identical to Dv(v̂ij ,⇤�(vi, vj)). There-
fore, K-Lipschitz continuity can be ensured by minimizing
AdaptiveMix.
Intuition. This theoretical result is also consistent with in-
tuition. Our general idea is to shrink the feature space for
robust representation. As Lipschitz continuity requires that
the distance in embedding space should be lower than that
in image space, shrinking feature space should be a reason-
able way to approximately ensure Lipschitz continuity.

3.3. AdaptiveMix-based Image Generation
Based on the previous analysis, the proposed module

can help to stabilize the training of GANs. In this paper,
we show how to apply AdapativeMix to image generation
by integrating it with two state-of-the-art image generation
methods, WGAN [1], and StyleGAN-V2 [20]. We mainly
elaborate on the integration of WGAN in the main paper,
and that of StyleGAN-V2 is given in the supplementary
materials. Thanks to the plug-and-play property of Adap-
tiveMix, we equip WGAN with AdaptiveMix in a simple
manner. In particular, we apply AdaptiveMix to WGAN’s
discriminator consisting of feature extractor F(·) and clas-
sifier head J (·) We then rewrite the learning objective to
add the AdaptiveMix to WGANs:

min
G

max
F,J

E
x⇠pr

[J (F(x))]�E
z⇠pz

[J (F(G(z)))]

+min
F

E
x⇠pr,pg

[Lada]
(6)

where z is the noise input of the generator G(·); L2 norm
is adapted as the metrics for Lada, the output of J (·) refers
to a scalar to estimate the realness of the given sample. To
simplify the structure of J (·), we directly adopt averaging
operator as J (·). In this paper, AdaptiveMix generates hard
samples by the convex combination of real samples and fake
ones generated by the generator. Such mixing is a kind of
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discriminator consisting of feature extractor F(·) and clas-
sifier head J (·) We then rewrite the learning objective to
add the AdaptiveMix to WGANs:

min
G

max
F,J

E
x⇠pr

[J (F(x))]�E
z⇠pz

[J (F(G(z)))]

+min
F

E
x⇠pr,pg

[Lada]
(6)

where z is the noise input of the generator G(·); L2 norm
is adapted as the metrics for Lada, the output of J (·) refers
to a scalar to estimate the realness of the given sample. To
simplify the structure of J (·), we directly adopt averaging
operator as J (·). In this paper, AdaptiveMix generates hard
samples by the convex combination of real samples and fake
ones generated by the generator. Such mixing is a kind of
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Table 2. The ablation study of the proposed method on CIFAR10
[22]. Mean FID ± S.D. refers to the mean and standard deviation
of FID scores when the models are trained by 100, 400, and 800
epochs. Min FID is the optimal result during training.

Mean FID ± S.D. # Min FID #
Baseline 106.81 ± 21.79 55.96

Baseline + AdaptiveMix 39.52 ± 7.85 30.85

Table 3. The evaluation for the Lipschitz continuity on FFHQ-
5k [19] with StyleGAN-V2 [20]. The criterion refers to the
averaging of embedding distance

image distance on the given pairs of samples, i.e.
Dv(F(xi),F(xj))

Dx(xi,xj)
. Smaller is better.

Real Samples Generated Samples Both
StyleGAN-V2 3.167 0.263 0.735
StyleGAN-V2 + Ours 1.391 0.166 0.291

4.1. Performance on Image Generation

Ablation Study. To quantify the contribution of Adap-
tiveMix, we test the image generation performance with
or without AdaptiveMix. As listed in Tab. 2, the pro-
posed method outperforms the baseline [1] significantly in
all cases. Such improvement indicates that the proposed
method boosts the training of GANs.

In addition to the quantitative analysis, we also conduct
visualizations to showcase the effectiveness of the proposed
method. As shown in Fig. 3, we generate two toy datasets,
where each consists of 50k 2D points with the x and y co-
ordinates of a point in the range of [-2, 2]. The distribution
of points generated by our method is most similar to that
of the real ones, indicating the best generation performance
than the other two baselines. For further investigation, the
output of the discriminator for each position is visualized
in the second row of Fig. 3. If the discriminator enlarges
the distance between real and generated samples like Std-
GAN [5], the generator is hard to derive useful guidance
from the discriminator, leading to poor generated results or
mode collapse. In contrast, the proposed method shrinks the
input samples; hence the confidence score map is flattened,
which can provide more health gradient for the generator,
resulting in a better generation performance. We also quan-
tify such a phenomenon in the practical case. As shown
in Tab. 3, we calculate the averaging ratios between the
distances in the feature space and image space. By adopt-
ing AdaptiveMix, the corresponding ratios are minimized
among all the cases, which can be regarded as a guarantee
for the Lipschitz continuity.

Comparing with Existing Methods. To further show the
superiority of the proposed method, we compare the per-
formance of the proposed method with the well-known loss
functions on the toys dataset, CIFAR10 [22], and CelebA
[31]. As shown in Tab. 4, the proposed method outperforms
other methods in both datasets by a large margin. Com-

Table 4. FIDs of DCGAN [37] using various learning objectives
on CelebA [31] and CIFAR10 [22].

Learning Objective CIFAR-10 CelebA
WGAN [1] (ICML’17) 55.96 -
HingeGAN [58] (ICLR’17) 42.40 25.57
LSGAN [33] (ICCV’17) 42.01 30.76
DCGAN [37] (ICLR’16) 38.56 27.02
WGAN-GP [6] (NIPS’17) 41.86 70.28
Re-implemented WGAN-GP 38.63 70.16
Realness GAN-Obj.1 [47] (ICLR’2020) 36.73 -
Realness GAN-Obj.2 [47] (ICLR’2020) 34.59 23.51
Realness GAN-Obj.3 [47] (ICLR’2020) 36.21 -
AdaptiveMix (Ours) 30.85 12.43

Table 5. FID and IS of the proposed method on AFHQ [2] and
FFHQ [19] for StyleGAN-V2 [20] compared with the other state-
of-the-art solutions for GAN training

AFHQ-Cat-5k FFHQ (Full)Method FID IS FID IS
StyleGAN-V2 [20] (CVPR’20) 7.737 1.825 3.862 5.243
StyleGAN-V2 (Re-Impl.) 7.924 1.890 3.810 5.185
LC-Reg [43] (CVPR’21) 6.699 1.943 3.933 5.312
Style GAN-V2 + Ours 4.477 1.972 3.623 5.222
ADA [17] (NIPS’20) 6.053 2.119 4.018 5.329
ADA (Re-Impl.) 5.582 2.059 3.713 5.200
ADA + Ours 4.680 2.069 3.681 5.335
APA [15] (NIPS’2021) 4.876 2.156 3.678 5.336
APA (Re-Impl.) 4.645 2.093 3.752 5.281
APA+Ours 4.148 2.096 3.609 5.296

Table 6. FID and IS of our method compared to previous tech-
niques for regularizing GANs on FFHQ-5k [19]. StyleGAN-V2
[20] is used as the baseline.

Regularization FID IS
Baseline [20] (CVPR’20) 37.830 4.018
Baseline (Re-Impl.) 36.053 4.097
Instance Noise [42] (ICLR’17) 40.981 4.231
One-sided LS [39] (NIPS’16 ) 33.978 4.029
LC-Reg [43] (CVPR’21) 35.148 3.926
Ours 18.769 4.332
APA [15] (NIPS’2021) 13.249 4.487
APA (Re-Impl.) 14.368 4.855
APA+Ours 11.498 4.866

pared with the recent method, Realness GAN, a 10.81%
improvement in FID is achieved by the proposed method
on CIFAR10. Similarly, in the case of CelebA, the FIDs
of Realness GAN and the proposed method are 23.51 and
12.43, respectively, which convincingly shows the advan-
tage of AdaptiveMix. Note that the results in Tab. 4 are
taken from [47] based on the same architecture, i.e. DC-
GAN. The corresponding visualization results are given in
the supplementary material.

In order to comprehensively justify AdaptiveMix, we
also compare the proposed method with the recent regu-
larization for GANs. Tab. 5 shows the proposed method

Table 2. The ablation study of the proposed method on CIFAR10
[22]. Mean FID ± S.D. refers to the mean and standard deviation
of FID scores when the models are trained by 100, 400, and 800
epochs. Min FID is the optimal result during training.

Mean FID ± S.D. # Min FID #
Baseline 106.81 ± 21.79 55.96

Baseline + AdaptiveMix 39.52 ± 7.85 30.85

Table 3. The evaluation for the Lipschitz continuity on FFHQ-
5k [19] with StyleGAN-V2 [20]. The criterion refers to the
averaging of embedding distance

image distance on the given pairs of samples, i.e.
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Dx(xi,xj)
. Smaller is better.
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StyleGAN-V2 3.167 0.263 0.735
StyleGAN-V2 + Ours 1.391 0.166 0.291

4.1. Performance on Image Generation

Ablation Study. To quantify the contribution of Adap-
tiveMix, we test the image generation performance with
or without AdaptiveMix. As listed in Tab. 2, the pro-
posed method outperforms the baseline [1] significantly in
all cases. Such improvement indicates that the proposed
method boosts the training of GANs.

In addition to the quantitative analysis, we also conduct
visualizations to showcase the effectiveness of the proposed
method. As shown in Fig. 3, we generate two toy datasets,
where each consists of 50k 2D points with the x and y co-
ordinates of a point in the range of [-2, 2]. The distribution
of points generated by our method is most similar to that
of the real ones, indicating the best generation performance
than the other two baselines. For further investigation, the
output of the discriminator for each position is visualized
in the second row of Fig. 3. If the discriminator enlarges
the distance between real and generated samples like Std-
GAN [5], the generator is hard to derive useful guidance
from the discriminator, leading to poor generated results or
mode collapse. In contrast, the proposed method shrinks the
input samples; hence the confidence score map is flattened,
which can provide more health gradient for the generator,
resulting in a better generation performance. We also quan-
tify such a phenomenon in the practical case. As shown
in Tab. 3, we calculate the averaging ratios between the
distances in the feature space and image space. By adopt-
ing AdaptiveMix, the corresponding ratios are minimized
among all the cases, which can be regarded as a guarantee
for the Lipschitz continuity.

Comparing with Existing Methods. To further show the
superiority of the proposed method, we compare the per-
formance of the proposed method with the well-known loss
functions on the toys dataset, CIFAR10 [22], and CelebA
[31]. As shown in Tab. 4, the proposed method outperforms
other methods in both datasets by a large margin. Com-

Table 4. FIDs of DCGAN [37] using various learning objectives
on CelebA [31] and CIFAR10 [22].

Learning Objective CIFAR-10 CelebA
WGAN [1] (ICML’17) 55.96 -
HingeGAN [58] (ICLR’17) 42.40 25.57
LSGAN [33] (ICCV’17) 42.01 30.76
DCGAN [37] (ICLR’16) 38.56 27.02
WGAN-GP [6] (NIPS’17) 41.86 70.28
Re-implemented WGAN-GP 38.63 70.16
Realness GAN-Obj.1 [47] (ICLR’2020) 36.73 -
Realness GAN-Obj.2 [47] (ICLR’2020) 34.59 23.51
Realness GAN-Obj.3 [47] (ICLR’2020) 36.21 -
AdaptiveMix (Ours) 30.85 12.43

Table 5. FID and IS of the proposed method on AFHQ [2] and
FFHQ [19] for StyleGAN-V2 [20] compared with the other state-
of-the-art solutions for GAN training

AFHQ-Cat-5k FFHQ (Full)Method FID IS FID IS
StyleGAN-V2 [20] (CVPR’20) 7.737 1.825 3.862 5.243
StyleGAN-V2 (Re-Impl.) 7.924 1.890 3.810 5.185
LC-Reg [43] (CVPR’21) 6.699 1.943 3.933 5.312
Style GAN-V2 + Ours 4.477 1.972 3.623 5.222
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APA [15] (NIPS’2021) 4.876 2.156 3.678 5.336
APA (Re-Impl.) 4.645 2.093 3.752 5.281
APA+Ours 4.148 2.096 3.609 5.296

Table 6. FID and IS of our method compared to previous tech-
niques for regularizing GANs on FFHQ-5k [19]. StyleGAN-V2
[20] is used as the baseline.

Regularization FID IS
Baseline [20] (CVPR’20) 37.830 4.018
Baseline (Re-Impl.) 36.053 4.097
Instance Noise [42] (ICLR’17) 40.981 4.231
One-sided LS [39] (NIPS’16 ) 33.978 4.029
LC-Reg [43] (CVPR’21) 35.148 3.926
Ours 18.769 4.332
APA [15] (NIPS’2021) 13.249 4.487
APA (Re-Impl.) 14.368 4.855
APA+Ours 11.498 4.866

pared with the recent method, Realness GAN, a 10.81%
improvement in FID is achieved by the proposed method
on CIFAR10. Similarly, in the case of CelebA, the FIDs
of Realness GAN and the proposed method are 23.51 and
12.43, respectively, which convincingly shows the advan-
tage of AdaptiveMix. Note that the results in Tab. 4 are
taken from [47] based on the same architecture, i.e. DC-
GAN. The corresponding visualization results are given in
the supplementary material.

In order to comprehensively justify AdaptiveMix, we
also compare the proposed method with the recent regu-
larization for GANs. Tab. 5 shows the proposed method
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Image Classification

(4) Given an orthogonal classifier

feature smoothing that enforces the decision boundaries of
the discriminator to be smooth, improving the training sta-
bility of GANs. The pseudo-code is given in supplementary
material. Note that the traditional mixing-based methods
do not works for the zoo of WGANs, since WGAN plays
a dynamic min-max game where the output of the discrimi-
nator ranges from (�1,+1), while our method improves
the training of WGAN.

3.4. AdaptiveMix-based Image Classification
Besides image generation, the proposed AdaptiveMix

can be applied to image classification. Here we show how
to apply AdativeMix to this task. Different from the im-
age generation task, image classification requires features
extracted by the feature extractor F(·) of a classification
model to be discriminative as much as possible. Our Adap-
tiveMix shrinks regions of training data in the feature space,
which smooths features to some extent if AdaptiveMix is
solely applied. Nevertheless, this can be easily addressed
by adopting a proper classifier that enforces features of dif-
ferent classes to be separable.

Inspired by image classification method [52], we employ
an orthogonal classifier J̃ (·) to ensure the class-aware sep-
aration in the feature space, where the orthogonal classifier
J̃ (·) consists of several weight vectors wk 2 W , and wk

corresponding to the k-th class. In particular, we replace
the last fully-connected layer of a CNN-based classification
model with the orthogonal classifier J̃ (·). Thus, given xi,
the prediction score yk to k-th class is calculated as:

yki =
wT

k vi
||wk|| ||vi||

. (7)

where vi = F(xi) denoted xi’s feature extracted by feature
extractor F(·) of the classification model. The probability
pki that xi belongs to k-th class is calculated via a softmax
layer:

pki =
exp(yki )P

1ln
exp(yli)

(8)

where the set Pi = J̃ (vi) = {pki |1  k  n} forms the
final output of the CNN-based model for an n-class recog-
nition task.

By removing the bias and activation function in the last
layer, the classification model maps x into the allowed norm
ball space, which ensures that features corresponding to dif-
ferent classes can be separable. To further strengthen the
class-aware separation, we then introduce the orthogonal
constraint to initialize W , which is defined as:

Y

wk,wl2W,k 6=l

wT
k wl = 0. (9)

In addition, besides AdaptiveMix loss, we can use mixing-

Table 1. Summary of improvements by using our AdaptiveMix,
where Gain refers to our improvement over the baselines. Our
method AdaptiveMix boosts the performance of six baselines
across four tasks on seven widely-used datasets. Detailed compar-
ison results are provided in tables specified in the Tab. # column.

Dataset Tab. # Gain
C-10 [22] Tab. 4 -20.0% FID #

CelebA [30] Tab. 4 -54.0% FID #
FFHQ [19] Tab. 5 -4.9% FID #

AFHQ-CAT [2] Tab. 5 -43.5% FID #

Image
Generation

FFHQ-5k [19] Tab. 6 -47.9% FID #
C-10 [22] Tab. 11 +0.7% Acc. "
C-100 [22] Tab. 11 +1.5% Acc. "

T-ImageNet [4] Tab. 11 +5.87% Acc. "
Image

Classification
ImageNet [38] Tab. 11 +1.9% Acc. "

C-10 [22] Tab. 7 +4.6⇥ Acc. "
C-100 [22] Tab. 8 +5.2⇥ Acc. "Robust

Classification T-ImageNet [4] Tab. 8 +1.1 ⇥ Acc. "
OOD

Detection Benchmark [52] Tab. 12 +3.5% F1 "

based cross-entropy loss in the learning objective of image
classification following augmentation [54], since we use
Mixup to generate hard samples (See supplementary ma-
terial for more details on classification).

3.5. AdaptiveMix-based OOD Detection

AdaptiveMix can be easily integrated into the state-of-
the-art OOD detection model of [52]. Given all training
samples x 2 X as input, we can obtain the corresponding
representation v 2 V via the trained F(·). Then, the repre-
sentative representation v⇤k of the k-th class can be obtained
by computing the first singular vectors of {F(xi)|xi 2
X argmax eyi = k}. Note that v⇤k is calculated by SVD
rather than F(xi). Given a test sample xt, the probability
�t that xt is OOD is calculated as:

�t = min
k

arccos(
|FT (xt)v⇤k|
||F(xt)||

), (10)

where xt is categorized as an OOD sample if �t is larger
than a predefined threshold �⇤.

4. Experiments

To evaluate the performance of our method, we conduct
extensive experiments on various tasks, including image
generation, image recognition, robust image classification,
and OOD detection. Tab. 1 shows that the proposed method
improves the baselines significantly on these tasks. Below,
we first evaluate the performance of the proposed method on
image generation and then test the proposed method on vi-
sual recognition tasks such as image classification and OOD
detection. Note that we elaborate on datasets used in the ex-
periments, additional experiments, and implementation de-
tails in the supplementary material.

(1) Given samples and their labels 

Algorithm 1 AdaptiveMix-based WGAN
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
7: Lwgan  E

z⇠pz

[J (F(G(z)))]� E
x⇠pr

[J (F(x))];

8: L Lwgan + E
x⇠pr,pg

[Lada];

9: �t  Adam( @L
@�t�1

);
10: �t  Adam( @L

@�t�1
);

11: end for

12: Sample latent variable z ⇠ pz;
13: L E

x⇠pr,pg

[Lada]� E
z⇠pz

[J (F(G(z)))];

14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
7: x̂g  g(xgi, xgj ,�);
8: Lg  E

x̂g⇠pg

[J (F(x̂g))]� E
x̂⇠pr

[J (F(x̂))];

9: L Lg + E
x̂⇠pr

[Lada] + E
x̂g⇠pg

[Lada] +R1 Reg.;

10: �t  Adam( @L
@�t�1

);
11: �t  Adam( @L

@�t�1
);

12: end for

13: Sample latent variable z ⇠ pz;
14: L E

x̂g⇠pg

[Lada] + PL Reg.� E
z⇠pz

[J (F(x̂g))];

15: ✓  Adam(@L@✓ );
16: end while

17: Return ✓;

Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-

(2) Generate hard samples

posed in recent years, working similarly to the data aug-
mentation. These methods suffer from the sensitivity to the
severity of augmented data and have to use adaptive hyper-
parameter [15, 17]. Besides, Transform-Reg [35] designs
transformation consistency regularization loss for image-to-
image translation, which encourages the output image space
to preserve local smoothness in the input space. Different
from these approaches, we train a robust discriminator by
shrinking the feature space. Without sacrificing the capa-
bility of representation, the proposed method can be elabo-
rated into many networks and easily combined with existing
regularization. Moreover, the proposed method can contin-
ually construct hard samples for training without too many
hyperparameters, and thus can be used in various additional
tasks, such as OOD detection [24, 26, 32, 48, 52] and image
classification [4, 22, 46].

3. Method
In this paper, we investigate how to improve the training

of GANs. We first propose a novel module named Adap-
tiveMix to shrink the regions of training data in the image
representation space of the discriminator. Then, we show
that our AdaptiveMix can encourage Lipschitz continuity,
and thereby facilitate the performance of GANs. Finally,
we equip our AdaptiveMix with an orthogonal classifier of
the start-of-the-art OOD method in [52] to show how to use
our module for OOD detection and image recognition tasks.

3.1. AdaptiveMix
Our goal is to improve the training of GANs by control-

ling the discriminator, which can be formulated from the
perspective of robust image classification. Without loss of
generality, let the discriminator consist of a feature extrac-
tor F(·) and a classifier head J (·), where the feature extrac-
tor is to extract feature from an image, and the classifier is to
classify the extracted feature. Our insight is that we can im-
prove the training of GANs by improving the representation
of the feature extractor F , motivated by studies on robust
image representation [44, 60]. As observed in [44], vanilla
classification networks scatter training data in their feature
space, driving the classifier improperly to assign high con-
fidences to samples that are off the underlying manifold of
training data. Similarly, with such representation, it is dif-
ficult for the discriminator to learn the distribution of real
data. Therefore, we propose to shrink the regions of training
data in the image representation space supported by the fea-
ture extractor of the discriminator for improving the training
of GANs.

We propose a module, termed AdaptiveMix, to shrink
the regions of training data in the space represented by a
feature extractor F . However, it is intractable to directly
capture the regions of training data in the feature space.
Given training samples of a class c, our insight is that we can
shrink its regions in the feature space by reducing the dis-
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Figure 2. The illustration of our AdaptiveMix. (a) Easy samples
xi and xj of a class are projected into the feature space by feature
extractor F(·), where vi = F(xi). (b) Hard sample x̂ij is gener-
ated by the convex combination of a training sample pairs xi and
xj , and is projected to the feature space. (c) AdaptiveMix shrinks
the region of the class in the feature space by reducing the feature
distance between easy and hard samples.

tance between hard and easy samples in the feature space,
where hard samples are regarded as samples that are diffi-
cult for networks to classify. In other words, we argue that
most hard samples are more peripheral than easy ones in
the feature space formed by all training samples of a class,
which leads the decision boundaries to enlarge the intra-
class distance for covering the hard samples. Therefore, for
class c, if we pull hard samples towards easy samples, the
regions of training samples of class c can be shrunk in the
feature space. Therefore, the proposed AdaptiveMix con-
sists of two steps. First, AdaptiveMix generates hard sam-
ples from the training data. Second, our AdaptiveMix re-
duces the distance between hard and easy samples.
Hard Sample Generation. A naive manner of finding hard
samples is to employ trained networks to evaluate training
samples, where samples to which the networks assign the
prediction with low confidence are considered as hard ones.
However, this introduces new issues. For example, this re-
quires well-trained networks, which are not always avail-
able. Instead, we propose a simple way to generate hard
samples, inspired by the promising performance of Mixup-
based image augmentation methods [7, 13, 54]. Recently,
various Mixup-based methods were proposed to mix multi-
ple images into a new image. Here we employ the vanilla
version of Mixup [54] to generate hard samples for simplic-
ity. Let X = {xi}Ni=1 denote N training images, where
xi is the i-th training image. AdaptiveMix mixes a pair of
training images to generate a hard sample following Mixup:

x̂ij = g(xi, xj ,�) = �xi + (1� �)xj , (1)

where g(·, ·,�) is a function linearly combining xi and
xj , � is a hyper-parameter sampled from Beta distribution

Algorithm 1 AdaptiveMix-based WGAN
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
7: Lwgan  E
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[J (F(G(z)))]� E
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11: end for

12: Sample latent variable z ⇠ pz;
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[J (F(G(z)))];

14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
7: x̂g  g(xgi, xgj ,�);
8: Lg  E
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13: Sample latent variable z ⇠ pz;
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[J (F(x̂g))];

15: ✓  Adam(@L@✓ );
16: end while

17: Return ✓;

Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-

posed in recent years, working similarly to the data aug-
mentation. These methods suffer from the sensitivity to the
severity of augmented data and have to use adaptive hyper-
parameter [15, 17]. Besides, Transform-Reg [35] designs
transformation consistency regularization loss for image-to-
image translation, which encourages the output image space
to preserve local smoothness in the input space. Different
from these approaches, we train a robust discriminator by
shrinking the feature space. Without sacrificing the capa-
bility of representation, the proposed method can be elabo-
rated into many networks and easily combined with existing
regularization. Moreover, the proposed method can contin-
ually construct hard samples for training without too many
hyperparameters, and thus can be used in various additional
tasks, such as OOD detection [24, 26, 32, 48, 52] and image
classification [4, 22, 46].

3. Method
In this paper, we investigate how to improve the training

of GANs. We first propose a novel module named Adap-
tiveMix to shrink the regions of training data in the image
representation space of the discriminator. Then, we show
that our AdaptiveMix can encourage Lipschitz continuity,
and thereby facilitate the performance of GANs. Finally,
we equip our AdaptiveMix with an orthogonal classifier of
the start-of-the-art OOD method in [52] to show how to use
our module for OOD detection and image recognition tasks.

3.1. AdaptiveMix
Our goal is to improve the training of GANs by control-

ling the discriminator, which can be formulated from the
perspective of robust image classification. Without loss of
generality, let the discriminator consist of a feature extrac-
tor F(·) and a classifier head J (·), where the feature extrac-
tor is to extract feature from an image, and the classifier is to
classify the extracted feature. Our insight is that we can im-
prove the training of GANs by improving the representation
of the feature extractor F , motivated by studies on robust
image representation [44, 60]. As observed in [44], vanilla
classification networks scatter training data in their feature
space, driving the classifier improperly to assign high con-
fidences to samples that are off the underlying manifold of
training data. Similarly, with such representation, it is dif-
ficult for the discriminator to learn the distribution of real
data. Therefore, we propose to shrink the regions of training
data in the image representation space supported by the fea-
ture extractor of the discriminator for improving the training
of GANs.

We propose a module, termed AdaptiveMix, to shrink
the regions of training data in the space represented by a
feature extractor F . However, it is intractable to directly
capture the regions of training data in the feature space.
Given training samples of a class c, our insight is that we can
shrink its regions in the feature space by reducing the dis-
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Figure 2. The illustration of our AdaptiveMix. (a) Easy samples
xi and xj of a class are projected into the feature space by feature
extractor F(·), where vi = F(xi). (b) Hard sample x̂ij is gener-
ated by the convex combination of a training sample pairs xi and
xj , and is projected to the feature space. (c) AdaptiveMix shrinks
the region of the class in the feature space by reducing the feature
distance between easy and hard samples.

tance between hard and easy samples in the feature space,
where hard samples are regarded as samples that are diffi-
cult for networks to classify. In other words, we argue that
most hard samples are more peripheral than easy ones in
the feature space formed by all training samples of a class,
which leads the decision boundaries to enlarge the intra-
class distance for covering the hard samples. Therefore, for
class c, if we pull hard samples towards easy samples, the
regions of training samples of class c can be shrunk in the
feature space. Therefore, the proposed AdaptiveMix con-
sists of two steps. First, AdaptiveMix generates hard sam-
ples from the training data. Second, our AdaptiveMix re-
duces the distance between hard and easy samples.
Hard Sample Generation. A naive manner of finding hard
samples is to employ trained networks to evaluate training
samples, where samples to which the networks assign the
prediction with low confidence are considered as hard ones.
However, this introduces new issues. For example, this re-
quires well-trained networks, which are not always avail-
able. Instead, we propose a simple way to generate hard
samples, inspired by the promising performance of Mixup-
based image augmentation methods [7, 13, 54]. Recently,
various Mixup-based methods were proposed to mix multi-
ple images into a new image. Here we employ the vanilla
version of Mixup [54] to generate hard samples for simplic-
ity. Let X = {xi}Ni=1 denote N training images, where
xi is the i-th training image. AdaptiveMix mixes a pair of
training images to generate a hard sample following Mixup:

x̂ij = g(xi, xj ,�) = �xi + (1� �)xj , (1)

where g(·, ·,�) is a function linearly combining xi and
xj , � is a hyper-parameter sampled from Beta distribution

(3) Input samples to feature extractor

Algorithm 1 AdaptiveMix-based WGAN
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
7: Lwgan  E
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);
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);

11: end for

12: Sample latent variable z ⇠ pz;
13: L E
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z⇠pz

[J (F(G(z)))];

14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
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15: ✓  Adam(@L@✓ );
16: end while

17: Return ✓;

Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-
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1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
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14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
7: x̂g  g(xgi, xgj ,�);
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Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-

posed in recent years, working similarly to the data aug-
mentation. These methods suffer from the sensitivity to the
severity of augmented data and have to use adaptive hyper-
parameter [15, 17]. Besides, Transform-Reg [35] designs
transformation consistency regularization loss for image-to-
image translation, which encourages the output image space
to preserve local smoothness in the input space. Different
from these approaches, we train a robust discriminator by
shrinking the feature space. Without sacrificing the capa-
bility of representation, the proposed method can be elabo-
rated into many networks and easily combined with existing
regularization. Moreover, the proposed method can contin-
ually construct hard samples for training without too many
hyperparameters, and thus can be used in various additional
tasks, such as OOD detection [24, 26, 32, 48, 52] and image
classification [4, 22, 46].

3. Method
In this paper, we investigate how to improve the training

of GANs. We first propose a novel module named Adap-
tiveMix to shrink the regions of training data in the image
representation space of the discriminator. Then, we show
that our AdaptiveMix can encourage Lipschitz continuity,
and thereby facilitate the performance of GANs. Finally,
we equip our AdaptiveMix with an orthogonal classifier of
the start-of-the-art OOD method in [52] to show how to use
our module for OOD detection and image recognition tasks.

3.1. AdaptiveMix
Our goal is to improve the training of GANs by control-

ling the discriminator, which can be formulated from the
perspective of robust image classification. Without loss of
generality, let the discriminator consist of a feature extrac-
tor F(·) and a classifier head J (·), where the feature extrac-
tor is to extract feature from an image, and the classifier is to
classify the extracted feature. Our insight is that we can im-
prove the training of GANs by improving the representation
of the feature extractor F , motivated by studies on robust
image representation [44, 60]. As observed in [44], vanilla
classification networks scatter training data in their feature
space, driving the classifier improperly to assign high con-
fidences to samples that are off the underlying manifold of
training data. Similarly, with such representation, it is dif-
ficult for the discriminator to learn the distribution of real
data. Therefore, we propose to shrink the regions of training
data in the image representation space supported by the fea-
ture extractor of the discriminator for improving the training
of GANs.

We propose a module, termed AdaptiveMix, to shrink
the regions of training data in the space represented by a
feature extractor F . However, it is intractable to directly
capture the regions of training data in the feature space.
Given training samples of a class c, our insight is that we can
shrink its regions in the feature space by reducing the dis-
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Figure 2. The illustration of our AdaptiveMix. (a) Easy samples
xi and xj of a class are projected into the feature space by feature
extractor F(·), where vi = F(xi). (b) Hard sample x̂ij is gener-
ated by the convex combination of a training sample pairs xi and
xj , and is projected to the feature space. (c) AdaptiveMix shrinks
the region of the class in the feature space by reducing the feature
distance between easy and hard samples.

tance between hard and easy samples in the feature space,
where hard samples are regarded as samples that are diffi-
cult for networks to classify. In other words, we argue that
most hard samples are more peripheral than easy ones in
the feature space formed by all training samples of a class,
which leads the decision boundaries to enlarge the intra-
class distance for covering the hard samples. Therefore, for
class c, if we pull hard samples towards easy samples, the
regions of training samples of class c can be shrunk in the
feature space. Therefore, the proposed AdaptiveMix con-
sists of two steps. First, AdaptiveMix generates hard sam-
ples from the training data. Second, our AdaptiveMix re-
duces the distance between hard and easy samples.
Hard Sample Generation. A naive manner of finding hard
samples is to employ trained networks to evaluate training
samples, where samples to which the networks assign the
prediction with low confidence are considered as hard ones.
However, this introduces new issues. For example, this re-
quires well-trained networks, which are not always avail-
able. Instead, we propose a simple way to generate hard
samples, inspired by the promising performance of Mixup-
based image augmentation methods [7, 13, 54]. Recently,
various Mixup-based methods were proposed to mix multi-
ple images into a new image. Here we employ the vanilla
version of Mixup [54] to generate hard samples for simplic-
ity. Let X = {xi}Ni=1 denote N training images, where
xi is the i-th training image. AdaptiveMix mixes a pair of
training images to generate a hard sample following Mixup:

x̂ij = g(xi, xj ,�) = �xi + (1� �)xj , (1)

where g(·, ·,�) is a function linearly combining xi and
xj , � is a hyper-parameter sampled from Beta distribution

Algorithm 1 AdaptiveMix-based WGAN
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
7: Lwgan  E
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[J (F(G(z)))];

14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
7: x̂g  g(xgi, xgj ,�);
8: Lg  E

x̂g⇠pg

[J (F(x̂g))]� E
x̂⇠pr

[J (F(x̂))];

9: L Lg + E
x̂⇠pr

[Lada] + E
x̂g⇠pg

[Lada] +R1 Reg.;

10: �t  Adam( @L
@�t�1

);
11: �t  Adam( @L

@�t�1
);

12: end for

13: Sample latent variable z ⇠ pz;
14: L E

x̂g⇠pg

[Lada] + PL Reg.� E
z⇠pz

[J (F(x̂g))];

15: ✓  Adam(@L@✓ );
16: end while

17: Return ✓;

Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-

Algorithm 1 AdaptiveMix-based WGAN
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
1: while ✓ has not converged do

2: for t = 1 to nc do

3: Sample x ⇠ pr, latent variable z ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xg  G✓(z);
6: x̂ g(x, xg,�) by Eq. (1);
7: Lwgan  E

z⇠pz

[J (F(G(z)))]� E
x⇠pr

[J (F(x))];

8: L Lwgan + E
x⇠pr,pg

[Lada];

9: �t  Adam( @L
@�t�1

);
10: �t  Adam( @L

@�t�1
);

11: end for

12: Sample latent variable z ⇠ pz;
13: L E

x⇠pr,pg

[Lada]� E
z⇠pz

[J (F(G(z)))];

14: ✓  Adam(@L@✓ );
15: end while

16: Return ✓;

B.1. Datasets and Experimental Settings

Synthetic Dataset consists of data from two different
distributions, including mixed Gaussian distribution [34]
and mixed circle lines [3]. 50k points are sampled from
the distribution and each point is represented as a vector
containing abscissa and ordinate values. G(·) consists of
4 fully-connected hidden layers and D(·) is composed of
three fully-connected layers. ReLU activation and batch
normalization are used in G(·). The input code z is a 32-
dimensional vector sampled from a standard normal distri-
bution. Models are trained by Adam [22] for 500 epochs.

CIFAR10 [23]. For this dataset, DCGAN [36] is selected
as the architecture to test the performance of different learn-
ing objectives. The model is trained by Adam with �1=0.0
and �2=0.999. The learning rate is 0.0001, with a decay
rate of 0.9 for every 50 epochs. The batch size for training
is 64. A 64-dimensional Gaussian distribution is adopted as
the input for G(·), while the output of f(D(·)) is set as a
16-dimensional embedding code.

CelebA [27]. The images are cropped, aligned, and re-
sized to 256⇥ 256. The learning rate is 0.0001 with a decay
rate of 0.9 per 2 epochs. A 128-dimensional Gaussian dis-
tribution is adopted as the input for G(·), and the output of
f(D(·)) is set as a 32-dimensional embedding code. D(·)
and G(·) are updated step by step. The remaining settings,

Algorithm 2 AdaptiveMix-based StyleGAN-V2
Input:

Generator G✓(·); Feature Extractor F�(·); Classifier
Head J�(·); The number of critic iterations per generator
iteration nc

Output:

Trained Parameters ✓;
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2: for t = 1 to nc do

3: Sample xi, xj ⇠ pr, latent variable zi, zj ⇠ pz;
4: Sample � from Beta distribution B(↵,↵);
5: xgi  G✓(zi); xgj  G✓(zj);
6: x̂ g(xi, xj ,�);
7: x̂g  g(xgi, xgj ,�);
8: Lg  E

x̂g⇠pg

[J (F(x̂g))]� E
x̂⇠pr

[J (F(x̂))];

9: L Lg + E
x̂⇠pr

[Lada] + E
x̂g⇠pg

[Lada] +R1 Reg.;

10: �t  Adam( @L
@�t�1

);
11: �t  Adam( @L

@�t�1
);

12: end for

13: Sample latent variable z ⇠ pz;
14: L E

x̂g⇠pg

[Lada] + PL Reg.� E
z⇠pz

[J (F(x̂g))];

15: ✓  Adam(@L@✓ );
16: end while

17: Return ✓;

Algorithm 3 AdaptiveMix-based Visual Recognition
Input:

Feature Extractor F(·); Orthogonal Classifier J̃ (·);
Output:

Trained F(·);
1: Initialize J̃ (·) through Eq. (9);
2: while F(·) has not converged do

3: Sample (xi, yi), (xj , yj) ⇠ (X ,Y);
4: Sample � from Beta distribution B(↵,↵);
5: x̂ij  g(xi, xj ,�) by Eq. (1);
6: ŷij  g(yi, yj ,�) by Eq. (1);
7: vi, vj , v̂ij  F(xi),F(xj),F(x̂ij);
8: Lc  ŷij log(J̃ (F(x̂ij)))+ŷij log(J̃ (g(vi, vj ,�)))
9: Lada  Eq.(2)

10: Lt  Lc + Lada;
11: Update F(·) by minimizing Lt;
12: end while

13: Return F(·);

including architecture, optimizer, and evaluation metric, are
identical to the setting for CIFAR10.

AFHQ-CAT [5] includes 5,153 closeups for cat faces.
We resized all images to the resolution of 256 ⇥ 256 using
a high-quality Lanczos filter [24]. In this case, StyleGAN-

posed in recent years, working similarly to the data aug-
mentation. These methods suffer from the sensitivity to the
severity of augmented data and have to use adaptive hyper-
parameter [15, 17]. Besides, Transform-Reg [35] designs
transformation consistency regularization loss for image-to-
image translation, which encourages the output image space
to preserve local smoothness in the input space. Different
from these approaches, we train a robust discriminator by
shrinking the feature space. Without sacrificing the capa-
bility of representation, the proposed method can be elabo-
rated into many networks and easily combined with existing
regularization. Moreover, the proposed method can contin-
ually construct hard samples for training without too many
hyperparameters, and thus can be used in various additional
tasks, such as OOD detection [24, 26, 32, 48, 52] and image
classification [4, 22, 46].

3. Method
In this paper, we investigate how to improve the training

of GANs. We first propose a novel module named Adap-
tiveMix to shrink the regions of training data in the image
representation space of the discriminator. Then, we show
that our AdaptiveMix can encourage Lipschitz continuity,
and thereby facilitate the performance of GANs. Finally,
we equip our AdaptiveMix with an orthogonal classifier of
the start-of-the-art OOD method in [52] to show how to use
our module for OOD detection and image recognition tasks.

3.1. AdaptiveMix
Our goal is to improve the training of GANs by control-

ling the discriminator, which can be formulated from the
perspective of robust image classification. Without loss of
generality, let the discriminator consist of a feature extrac-
tor F(·) and a classifier head J (·), where the feature extrac-
tor is to extract feature from an image, and the classifier is to
classify the extracted feature. Our insight is that we can im-
prove the training of GANs by improving the representation
of the feature extractor F , motivated by studies on robust
image representation [44, 60]. As observed in [44], vanilla
classification networks scatter training data in their feature
space, driving the classifier improperly to assign high con-
fidences to samples that are off the underlying manifold of
training data. Similarly, with such representation, it is dif-
ficult for the discriminator to learn the distribution of real
data. Therefore, we propose to shrink the regions of training
data in the image representation space supported by the fea-
ture extractor of the discriminator for improving the training
of GANs.

We propose a module, termed AdaptiveMix, to shrink
the regions of training data in the space represented by a
feature extractor F . However, it is intractable to directly
capture the regions of training data in the feature space.
Given training samples of a class c, our insight is that we can
shrink its regions in the feature space by reducing the dis-
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Figure 2. The illustration of our AdaptiveMix. (a) Easy samples
xi and xj of a class are projected into the feature space by feature
extractor F(·), where vi = F(xi). (b) Hard sample x̂ij is gener-
ated by the convex combination of a training sample pairs xi and
xj , and is projected to the feature space. (c) AdaptiveMix shrinks
the region of the class in the feature space by reducing the feature
distance between easy and hard samples.

tance between hard and easy samples in the feature space,
where hard samples are regarded as samples that are diffi-
cult for networks to classify. In other words, we argue that
most hard samples are more peripheral than easy ones in
the feature space formed by all training samples of a class,
which leads the decision boundaries to enlarge the intra-
class distance for covering the hard samples. Therefore, for
class c, if we pull hard samples towards easy samples, the
regions of training samples of class c can be shrunk in the
feature space. Therefore, the proposed AdaptiveMix con-
sists of two steps. First, AdaptiveMix generates hard sam-
ples from the training data. Second, our AdaptiveMix re-
duces the distance between hard and easy samples.
Hard Sample Generation. A naive manner of finding hard
samples is to employ trained networks to evaluate training
samples, where samples to which the networks assign the
prediction with low confidence are considered as hard ones.
However, this introduces new issues. For example, this re-
quires well-trained networks, which are not always avail-
able. Instead, we propose a simple way to generate hard
samples, inspired by the promising performance of Mixup-
based image augmentation methods [7, 13, 54]. Recently,
various Mixup-based methods were proposed to mix multi-
ple images into a new image. Here we employ the vanilla
version of Mixup [54] to generate hard samples for simplic-
ity. Let X = {xi}Ni=1 denote N training images, where
xi is the i-th training image. AdaptiveMix mixes a pair of
training images to generate a hard sample following Mixup:

x̂ij = g(xi, xj ,�) = �xi + (1� �)xj , (1)

where g(·, ·,�) is a function linearly combining xi and
xj , � is a hyper-parameter sampled from Beta distribution

(                                                          )

Image OOD Detection

Given a test sample xt , the probability φt that xt is OOD is calculated as: 

feature smoothing that enforces the decision boundaries of
the discriminator to be smooth, improving the training sta-
bility of GANs. The pseudo-code is given in supplementary
material. Note that the traditional mixing-based methods
do not works for the zoo of WGANs, since WGAN plays
a dynamic min-max game where the output of the discrimi-
nator ranges from (�1,+1), while our method improves
the training of WGAN.

3.4. AdaptiveMix-based Image Classification
Besides image generation, the proposed AdaptiveMix

can be applied to image classification. Here we show how
to apply AdativeMix to this task. Different from the im-
age generation task, image classification requires features
extracted by the feature extractor F(·) of a classification
model to be discriminative as much as possible. Our Adap-
tiveMix shrinks regions of training data in the feature space,
which smooths features to some extent if AdaptiveMix is
solely applied. Nevertheless, this can be easily addressed
by adopting a proper classifier that enforces features of dif-
ferent classes to be separable.

Inspired by image classification method [52], we employ
an orthogonal classifier J̃ (·) to ensure the class-aware sep-
aration in the feature space, where the orthogonal classifier
J̃ (·) consists of several weight vectors wk 2 W , and wk

corresponding to the k-th class. In particular, we replace
the last fully-connected layer of a CNN-based classification
model with the orthogonal classifier J̃ (·). Thus, given xi,
the prediction score yk to k-th class is calculated as:

yki =
wT

k vi
||wk|| ||vi||

. (7)

where vi = F(xi) denoted xi’s feature extracted by feature
extractor F(·) of the classification model. The probability
pki that xi belongs to k-th class is calculated via a softmax
layer:

pki =
exp(yki )P

1ln
exp(yli)

(8)

where the set Pi = J̃ (vi) = {pki |1  k  n} forms the
final output of the CNN-based model for an n-class recog-
nition task.

By removing the bias and activation function in the last
layer, the classification model maps x into the allowed norm
ball space, which ensures that features corresponding to dif-
ferent classes can be separable. To further strengthen the
class-aware separation, we then introduce the orthogonal
constraint to initialize W , which is defined as:

Y

wk,wl2W,k 6=l

wT
k wl = 0. (9)

In addition, besides AdaptiveMix loss, we can use mixing-

Table 1. Summary of improvements by using our AdaptiveMix,
where Gain refers to our improvement over the baselines. Our
method AdaptiveMix boosts the performance of six baselines
across four tasks on seven widely-used datasets. Detailed compar-
ison results are provided in tables specified in the Tab. # column.

Dataset Tab. # Gain
C-10 [22] Tab. 4 -20.0% FID #

CelebA [30] Tab. 4 -54.0% FID #
FFHQ [19] Tab. 5 -4.9% FID #

AFHQ-CAT [2] Tab. 5 -43.5% FID #

Image
Generation

FFHQ-5k [19] Tab. 6 -47.9% FID #
C-10 [22] Tab. 11 +0.7% Acc. "
C-100 [22] Tab. 11 +1.5% Acc. "

T-ImageNet [4] Tab. 11 +5.87% Acc. "
Image

Classification
ImageNet [38] Tab. 11 +1.9% Acc. "

C-10 [22] Tab. 7 +4.6⇥ Acc. "
C-100 [22] Tab. 8 +5.2⇥ Acc. "Robust

Classification T-ImageNet [4] Tab. 8 +1.1 ⇥ Acc. "
OOD

Detection Benchmark [52] Tab. 12 +3.5% F1 "

based cross-entropy loss in the learning objective of image
classification following augmentation [54], since we use
Mixup to generate hard samples (See supplementary ma-
terial for more details on classification).

3.5. AdaptiveMix-based OOD Detection

AdaptiveMix can be easily integrated into the state-of-
the-art OOD detection model of [52]. Given all training
samples x 2 X as input, we can obtain the corresponding
representation v 2 V via the trained F(·). Then, the repre-
sentative representation v⇤k of the k-th class can be obtained
by computing the first singular vectors of {F(xi)|xi 2
X argmax eyi = k}. Note that v⇤k is calculated by SVD
rather than F(xi). Given a test sample xt, the probability
�t that xt is OOD is calculated as:

�t = min
k

arccos(
|FT (xt)v⇤k|
||F(xt)||

), (10)

where xt is categorized as an OOD sample if �t is larger
than a predefined threshold �⇤.

4. Experiments

To evaluate the performance of our method, we conduct
extensive experiments on various tasks, including image
generation, image recognition, robust image classification,
and OOD detection. Tab. 1 shows that the proposed method
improves the baselines significantly on these tasks. Below,
we first evaluate the performance of the proposed method on
image generation and then test the proposed method on vi-
sual recognition tasks such as image classification and OOD
detection. Note that we elaborate on datasets used in the ex-
periments, additional experiments, and implementation de-
tails in the supplementary material.

feature smoothing that enforces the decision boundaries of
the discriminator to be smooth, improving the training sta-
bility of GANs. The pseudo-code is given in supplementary
material. Note that the traditional mixing-based methods
do not works for the zoo of WGANs, since WGAN plays
a dynamic min-max game where the output of the discrimi-
nator ranges from (�1,+1), while our method improves
the training of WGAN.

3.4. AdaptiveMix-based Image Classification
Besides image generation, the proposed AdaptiveMix

can be applied to image classification. Here we show how
to apply AdativeMix to this task. Different from the im-
age generation task, image classification requires features
extracted by the feature extractor F(·) of a classification
model to be discriminative as much as possible. Our Adap-
tiveMix shrinks regions of training data in the feature space,
which smooths features to some extent if AdaptiveMix is
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aration in the feature space, where the orthogonal classifier
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extractor F(·) of the classification model. The probability
pki that xi belongs to k-th class is calculated via a softmax
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where the set Pi = J̃ (vi) = {pki |1  k  n} forms the
final output of the CNN-based model for an n-class recog-
nition task.

By removing the bias and activation function in the last
layer, the classification model maps x into the allowed norm
ball space, which ensures that features corresponding to dif-
ferent classes can be separable. To further strengthen the
class-aware separation, we then introduce the orthogonal
constraint to initialize W , which is defined as:
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In addition, besides AdaptiveMix loss, we can use mixing-

Table 1. Summary of improvements by using our AdaptiveMix,
where Gain refers to our improvement over the baselines. Our
method AdaptiveMix boosts the performance of six baselines
across four tasks on seven widely-used datasets. Detailed compar-
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based cross-entropy loss in the learning objective of image
classification following augmentation [54], since we use
Mixup to generate hard samples (See supplementary ma-
terial for more details on classification).

3.5. AdaptiveMix-based OOD Detection

AdaptiveMix can be easily integrated into the state-of-
the-art OOD detection model of [52]. Given all training
samples x 2 X as input, we can obtain the corresponding
representation v 2 V via the trained F(·). Then, the repre-
sentative representation v⇤k of the k-th class can be obtained
by computing the first singular vectors of {F(xi)|xi 2
X argmax eyi = k}. Note that v⇤k is calculated by SVD
rather than F(xi). Given a test sample xt, the probability
�t that xt is OOD is calculated as:

�t = min
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arccos(
|FT (xt)v⇤k|
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), (10)

where xt is categorized as an OOD sample if �t is larger
than a predefined threshold �⇤.

4. Experiments

To evaluate the performance of our method, we conduct
extensive experiments on various tasks, including image
generation, image recognition, robust image classification,
and OOD detection. Tab. 1 shows that the proposed method
improves the baselines significantly on these tasks. Below,
we first evaluate the performance of the proposed method on
image generation and then test the proposed method on vi-
sual recognition tasks such as image classification and OOD
detection. Note that we elaborate on datasets used in the ex-
periments, additional experiments, and implementation de-
tails in the supplementary material.
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Figure 3. The experimental results on a synthetic data set: 2D points from (a) nine Gaussian distributions and (b) three circles are adopted
as the training data for GANs. From left to right in (a) and (b): data distribution, the samples generated by Std-GAN, WGAN, and
AdaptiveMix. The first row refers to the generated results, and the second row is the corresponding confidence map of the discriminator.

can help the convergence of GANs on different datasets and
achieve remarkable results. As a plug-and-play module, the
proposed method can also be combined with the state-of-
the-art augmentation-based methods, ADA [17] and APA
[15], which further improves the generation performance of
GANs ( 13.5% improvement in FID averagely). Finally,
we evaluate the performance of the proposed method us-
ing limited training data. As shown in Tab. 6, given only
5k samples, the proposed method can significantly improve
the baseline from 37.830 to 18.769 in FID. By combining
with APA, AdaptiveMix can achieve the best FID (11.498)
and IS (4.866) scores.

4.2. Performance on Visual Recognition

Figure 4. Compactness (i.e., standard deviation) of the embed-
ding clusters on CIFAR-10. Standard deviation is calculated on
the embedding codes within the same annotation. The ‘Total’ is
the compactness of the whole embedding codes in the test set.

Ablation Study. To validate that our method shrinks the
regions of samples in the feature space, we also analyze the
cluster compactness (i.e., standard deviation of the cluster)
of each class in the feature space on CIFAR-10, which is
presented in Fig. 4. It can be observed that the class-wise
standard deviation of our AdaptiveMix is much lower than
that of the baseline. The entry of ‘Total’ measures the com-
pactness of regions of all samples in the feature space. Fig.

Table 7. Accuracy (%) on CIFAR-10 based on WRN-28-10 trained
with the various methods with orthogonal classifier (Orth.).

CIFAR10 FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

Baseline 38.03 0.92 0.28 11.1 0.39
Mixup [54] 60.17 3.97 1.16 30.32 2.36
Orth. + Mixup 44.80 3.99 2.66 71.12 49.47
M.-Mixup [44] 59.32 7.97 2.97 51.47 11.12
Orth. + M.-Mixup 38.76 5.77 4.38 69.08 53.98
Ours 74.18 32.12 22.12 81.39 74.72

Table 8. Accuracy (%) on CIFAR-100 and Tiny-ImageNet
against various adversarial attacks based on WRN-28-10 [53] and
PreActResNet-18 [9] respectively.

Dataset Method FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

C-100

Baseline 11.71 0.79 0.42 4.42 0.23
Mixup [54] 27.34 0.28 0.11 4.83 0.28

M.-Mixup [44] 29.73 1.19 0.49 10.75 0.77
Ours 24.28 8.22 7.40 42.02 26.18

T-ImageNet

Baseline 4.26 0.81 0.60 27.92 7.52
Mixup [54] 4.23 0.98 0.77 29.13 15.41

M.-Mixup [44] 3.04 0.82 0.59 29.69 16.86
Ours 7.10 4.66 4.98 35.93 34.22

4 shows that our method shrinks regions of samples in the
feature space, compared with that of the baseline (i.e., with-
out AdaptiveMix).

Table 9. Accuracy (%) on CIFAR-10 based on WRN-28-10 trained
with the proposed method under various noise terms �.

Noise FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

�=0.1 71.90 32.54 23.31 79.58 71.96
�=0.01 71.56 34.04 25.96 80.68 72.00
�=0.005 71.31 27.79 20.64 80.46 71.58
�=0.001 70.51 27.42 17.98 79.47 67.00
�=0.05 74.18 32.12 22.12 81.39 74.72

Robust Image Recognition. To evaluate the adversarial ro-
bustness of the proposed method, we compare it with Mixup
[54], and Manifold Mixup [44] (denoted as M.-Mixup) and
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as the training data for GANs. From left to right in (a) and (b): data distribution, the samples generated by Std-GAN, WGAN, and
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[15], which further improves the generation performance of
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Ablation Study. To validate that our method shrinks the
regions of samples in the feature space, we also analyze the
cluster compactness (i.e., standard deviation of the cluster)
of each class in the feature space on CIFAR-10, which is
presented in Fig. 4. It can be observed that the class-wise
standard deviation of our AdaptiveMix is much lower than
that of the baseline. The entry of ‘Total’ measures the com-
pactness of regions of all samples in the feature space. Fig.

Table 7. Accuracy (%) on CIFAR-10 based on WRN-28-10 trained
with the various methods with orthogonal classifier (Orth.).

CIFAR10 FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

Baseline 38.03 0.92 0.28 11.1 0.39
Mixup [54] 60.17 3.97 1.16 30.32 2.36
Orth. + Mixup 44.80 3.99 2.66 71.12 49.47
M.-Mixup [44] 59.32 7.97 2.97 51.47 11.12
Orth. + M.-Mixup 38.76 5.77 4.38 69.08 53.98
Ours 74.18 32.12 22.12 81.39 74.72

Table 8. Accuracy (%) on CIFAR-100 and Tiny-ImageNet
against various adversarial attacks based on WRN-28-10 [53] and
PreActResNet-18 [9] respectively.

Dataset Method FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

C-100

Baseline 11.71 0.79 0.42 4.42 0.23
Mixup [54] 27.34 0.28 0.11 4.83 0.28

M.-Mixup [44] 29.73 1.19 0.49 10.75 0.77
Ours 24.28 8.22 7.40 42.02 26.18

T-ImageNet

Baseline 4.26 0.81 0.60 27.92 7.52
Mixup [54] 4.23 0.98 0.77 29.13 15.41

M.-Mixup [44] 3.04 0.82 0.59 29.69 16.86
Ours 7.10 4.66 4.98 35.93 34.22

4 shows that our method shrinks regions of samples in the
feature space, compared with that of the baseline (i.e., with-
out AdaptiveMix).

Table 9. Accuracy (%) on CIFAR-10 based on WRN-28-10 trained
with the proposed method under various noise terms �.

Noise FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

�=0.1 71.90 32.54 23.31 79.58 71.96
�=0.01 71.56 34.04 25.96 80.68 72.00
�=0.005 71.31 27.79 20.64 80.46 71.58
�=0.001 70.51 27.42 17.98 79.47 67.00
�=0.05 74.18 32.12 22.12 81.39 74.72

Robust Image Recognition. To evaluate the adversarial ro-
bustness of the proposed method, we compare it with Mixup
[54], and Manifold Mixup [44] (denoted as M.-Mixup) and

Table 10. Accuracy (%) on CIFAR-10 based on WRN-28-10
trained with the proposed method using various of alpha for the
Beta distribution to generate mixing coefficient �.

Alpha FGSM
(8/255)

PGD-8
(4/255)

PGD-16
(4/255)

CW-100
(c=0.01)

CW-100
(c=0.05)

↵=2.0 71.27 31.85 22.39 79.18 70.50
↵=1.0 74.18 32.12 22.12 81.39 74.72

Table 11. Accuracy (%) of the proposed AdaptiveMix on varying
baselines and datasets. Res. stands for resolution of the input.

Dataset Architecture Res. Baseline Ours
CIFAR-10 WRN-28-10 [53] 322 96.11 96.80
CIFAR-100 WRN-28-10 [53] 322 80.82 82.02
T-ImageNet PreActResNet-18 [9] 642 57.23 60.59
ImageNet ResNet-50 [8] 1282 67.38 68.69

present the results in Tab. 7 and Tab. 8. As listed in Tab. 7,
the average classification accuracy of the proposed method
can reach 56.91% on CIFAR-10, which surpasses Mixup
and Manifold Mixup by margins of 37.31% and 30.34%, re-
spectively. Furthermore, the proposed model is also tested
on a large-scale dataset, i.e., Tiny-ImageNet. As listed in
Tab. 8, the proposed approach can achieve superior perfor-
mance against different kinds of adversarial attacks, com-
pared to the other interpolation-based methods. Concretely,
by using our AdaptiveMix, the model can achieve an aver-
age accuracy of 17.38%, surpassing Manifold Mixup by an
improvement of ⇠7%.

Here, we analyze the influence caused by different values
of hyper-parameters, including � for the noise term, and ↵
for Beta Distribution in AdaptiveMix. As listed in Tab. 9,
noises on multiple levels �=[0.1, 0.05, 0.01, 0.005, 0.001]
are considered for the grid search. The best performance is
achieved as �=0.05. In terms of ↵, we conduct two settings
for comparison, including ↵=1.0 and 2.0 in Tab. 10. The
model trained with ↵=1.0 is observed to outperform the one
with ↵=2.0 (i.e., 56.91% vs. 55.04%).
Clean Image Recognition. To validate the effectiveness
of the proposed method on image recognition, we test the
proposed method on various standard datasets and compare
the results compared with the baseline [8, 9, 53]. Tab. 11
shows our method improves the baseline on all the cases.
In particular, on Tiny-ImageNet, 3% absolute improvement
can be achieved by the proposed method. The experimental
result indicates that AdaptiveMix also not only improves the
robustness but also benefits the generalization.
OOD Detection. To validate the effectiveness of our
method in OOD detection, we compare with state-of-the-
art OOD detection approaches [32, 36, 49, 52] on various
datasets. We refer to the accuracy of 1DS [52] as the up-
per bound of other methods in Tab. 12, since 1DS em-
ploys Monte Carlo (MC) sampling, which sacrifices com-
putational efficiency for achieving high accuracy. Conse-
quently, 1DS consumes a much higher time cost than other

Table 12. OOD detection on various OOD sets, where TIN-C,
TIN-R, LSUN-C, and LSUN-R refer to the OOD set of Tiny
ImageNet-Crop, Tiny ImageNet-Resize, LSUN-Crop, and LSUN-
Resize, respectively. All values are F1 score ("), † stands for the
result reproduced by the open-source code.

ID Dataset CIFAR10
OOD Dataset TIN-C TIN-R LSUN-C LSUN-R

Methods using MC sampling
1DS [52] (CVPR’21) 0.930 0.936 0.962 0.961

Methods which adopt OOD samples for validation and fine-tuning
ODIN [26] (ICLR’18) 0.902 0.926 0.894 0.937

Mahalanobis [24] (NIPS’18) 0.985 0.969 0.985 0.975
Soft. Pred. [10] (ICLR’17) 0.803 0.807 0.794 0.815

Counterfactual [36] (ECCV’18) 0.636 0.635 0.650 0.648
CROSR [49] (CVPR’19) 0.733 0.763 0.714 0.731
OLTR [32] (CVPR’19) 0.860 0.852 0.877 0.877

1DS w/o MC † [52] 0.890 0.886 0.897 0.907
1DS w/o MC † +Ours 0.922 0.911 0.934 0.937

methods. We build a baseline named ”1DS w/o MC” [52]
removing MC sampling for 1DS, and our method combines
”1DS w/o MC” with our AdaptiveMix. Tab. 12 shows the
performance of ”1DS w/o MC” is degraded due to the lack
of MC sampling. However, our AdaptiveMix effectively
improves ”1DS w/o MC” without expensive computational
cost.

5. Conclusion
In this paper, we proposed a novel module named Adap-

tiveMix which is simple yet effectively improves the train-
ing of GANs. By reducing the distance between training
samples and their convex combination in a dynamic man-
ner, AdaptiveMix can shrink regions of training data in the
feature space, enabling the stable training of GANs and im-
proving the image quality of generated samples. We also
demonstrate that AdaptiveMix is a reasonable way to ensure
the approximate estimation of Lipschitz continuity. Besides
image generation, we show that AdaptiveMix can be ap-
plied to other tasks, such as image classification and OOD
detection, thanks to its plug- and-play property. Experimen-
tal results demonstrate that our method effectively improves
the performance of baseline models on seven publicly avail-
able datasets with regard to various tasks.
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1. We propose a novel module, namely AdaptiveMix, to improve the training of GANs. Our 
AdaptiveMix is simple yet effective and plug-and-play, which is helpful for GANs to generate high-
quality images. 

2. We show that GANs can be stably and efficiently trained by shrinking regions of training data in 
image representation supported by the discriminator. 

3. We show our AdaptiveMix can be applied to not only image generation, but also OOD and robust 
image classification tasks. Extensive experiments show that our AdaptiveMix consistently boosts the 
performance of baselines for four different tasks (e.g., OOD) on seven widely-used datasets.
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