THU-PM-256

Teacher-generated spatial-attention labels boost robustness and accuracy of contrastive models

Yushi Yao*, Chang Ye*, Junfeng He+, Gamaleldin F. Elsayed+

* : Equal technical contribution + : Equal leadership and advising contribution

Google Research

Overview

- We create a dataset with spatial attention maps for the ImageNet benchmark by using a teacher model trained on human spatial attention labels.
- We use spatial-attention labels from the teacher model as an additional prediction target to train the contrastive model.
- The proposed method can learn better representation, leading to better accuracy and robustness for several downstream tasks.

Motivation

Human visual system

 Focus on specific region in visual scene that are useful to perform a specific vision task.

SALICON: Saliency in Context, Jiang et al, CVPR 2015

Explaining and harnessing adversarial examples, Goodfellow et al, ICLR 2015

Machine visual system

- Attend to physically meaningless patterns.
- Tend to exploit features that are predictive but not causal

Hypothesis

Existing work of applying human spatial attention to supervised model

Would it also benefit to self-supervised model?

Understanding more about human and machine attention in deep neural networks, Lai et al, TMM 2020

Challenge

- No existing large human spatial attention dataset
- Expensive to collect to collect a large volume of human spatial attention data.

Teacher model for predicting human saliency

Backbone Backbone Backbone Conv deconv/resize G.T. attention points

spatial-attention labels from the teacher model

image

Contrastive model with spatial attention maps

Results: Attention alignment between model and human

Results: Classification task

Model	Accuracy (%)		
Contrastive	67.61±0.04		
Contrastive attn. teacher	68.23±0.08		
Contrastive attn. co-train	66.35±0.12		
Supervised	75.91±0.10		
Supervised attn. teacher	76.02±0.04		
Supervised (ResNet-18)	69.17±0.07		
Supervised (ResNet-18) attn. teacher	69.30±0.04		

Summary

•

- Human spatial attention improves the SSL model's performance with teacher model.
 - Human spatial attention also improves the SL model's performance but the gain is smaller
- Gain is smaller when using human spatial attention directly on SSL (co-train)

Reason:

- Contrastive model's representation is more general as the human attention collected is not task-specific for teacher model.
- Teacher model generalize its knowledge on human attention beyond the limited ground truth human attention data.

Results: Robustness

Model	Speckle Noise	Gaussian Blur	Spatter	Saturate
Contrastive	28.23±0.31	26.16±0.07	43.08±0.18	60.42±0.15
Contrastive attn. teacher	29.15±0.65	27.10±0.35	44.04±0.08	60.50±0.02

Image classification accuracy on ImageNet-C

Image retrieval PR curve on ImageNet-C

Summary

- We provided a teacher model trained from scratch that can be used to generate pseudo-saliency labels for large data set
- Spatial attention guided models are highly predictive of human attention
- Spatial attention guided models are more accurate and robust than baselines