

CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution

Jiezhang Cao, Qin Wang, Yongqin Xian, Yawei Li, Bingbing Ni, Zhiming Pi, Kai Zhang, Yulun Zhang, Radu Timofte, Luc Van Gool

TUE-AM-171

Motivation

 The RGB value at x_q can be predicted by directly ensembling its neighborhood information

$$I(\mathbf{x}_q) = \sum_{(i,j)\in\mathcal{I}} \mathbf{w}_{i,j} \cdot f(\mathbf{Z}_{i,j}^*, \mathbf{x}_q - \mathbf{x}_{i,j}^*)$$

- $w_{i,j}$ = bilinear interpolation
- no learnable parameters
- neglects the similarity of features
- $Z_{i,i}^*$ has only neighboring features

Forecast

This work designs a new implicit model to generate continuous scale images

Continuous Implicit Attention-in-Attention Network

Continuous Implicit Attention-in-Attention Network

Given pairs of coordinates and latent codes, we predict RGB values at the given query

$$I_q = \phi_q \left(\sum_{t \in \mathcal{T}(x_q)} \sigma(\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{K}_t) \boldsymbol{V}_t \right)$$

Query, Key and Value:

$$\begin{cases} \boldsymbol{Q} = \boldsymbol{F}^* \\ \boldsymbol{K} = \phi_k \left(\left[\boldsymbol{F}_{i,j}, (\boldsymbol{r}_k)_{i,j}, \boldsymbol{s} \right] \right) \\ \boldsymbol{V} = \phi_v \left(\left[\left[\boldsymbol{F}_{i,j}, \widetilde{\boldsymbol{F}}_{i,j} \right], (\boldsymbol{r}_v)_{i,j}, \boldsymbol{s} \right] \right) \end{cases}$$

Scale-aware Attention Network

Given a local feature *F*, we first downsample *F* with smaller scale, then calculate non-local features,

$$\widetilde{F}_{i,j} = \varphi \left(\sum_{u,v} \frac{\exp(\widetilde{Q}_{i,j}^{\mathrm{T}} \widetilde{K}_{u,v})}{\sum_{u',v'} \exp(\widetilde{Q}_{i,j}^{\mathrm{T}} \widetilde{K}_{u',v'})} \widetilde{V}_{s'u,s'v}^{s'p \times s'p} \right)$$

Query, Key and Value for non-local features:

$$\begin{cases} \widetilde{\boldsymbol{Q}} = \varphi_k(\boldsymbol{F}) \\ \widetilde{\boldsymbol{K}} = \varphi_k(\boldsymbol{F}_{\downarrow_s}) \\ \widetilde{\boldsymbol{V}} = \varphi_{\boldsymbol{v}}(\boldsymbol{F}) \end{cases}$$

Experiment Results

Datasets:

- Training set: DIV2K (with continuous scales [1, 4])
- Testing set: Set5, Set14, B100, Urban100, Manga109

Backbones:

• RDN, SwinIR

Compared methods:

• MetaSR, LIIF, ITSRN, LTE

Quantitative Results

Methods	Set5 [3]			Set14 [80]			B100 [46]			Urban100 [29]			Manga109 [47]		
Methous	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$	$\times 2$	$\times 3$	$\times 4$
RDN [88]	38.24	34.71	32.47	34.01	30.57	28.81	32.34	29.26	27.72	32.89	28.80	26.61	39.18	34.13	31.00
RDN-MetaSR [28]	38.22	34.63	32.38	33.98	30.54	28.78	32.33	29.26	27.71	32.92	28.82	26.55	-	-	-
RDN-LIIF [13]	38.17	34.68	32.50	33.97	30.53	28.80	32.32	29.26	27.74	32.87	28.82	26.68	39.26	34.21	31.20
RDN-ITSRN [†] [79]	38.23	34.76	32.55	34.19	30.59	28.88	32.38	29.32	27.79	33.07	28.96	26.77	39.34	34.39	31.37
RDN-LTE [39]	38.23	34.72	32.61	34.09	30.58	28.88	32.36	29.30	27.77	33.04	28.97	26.81	39.28	34.32	31.30
RDN-CiaoSR (ours)	38.29	34.85	32.66	34.22	30.65	28.93	32.41	29.34	27.83	33.30	29.17	27.11	39.51	34.57	31.57
SwinIR [40]	38.35	34.89	32.72	34.14	30.77	28.94	32.44	29.37	27.83	33.40	29.29	27.07	39.60	34.74	31.67
SwinIR-MetaSR [28]	38.26	34.77	32.47	34.14	30.66	28.85	32.39	29.31	27.75	33.29	29.12	26.76	39.46	34.62	31.37
SwinIR-LIIF [13]	38.28	34.87	32.73	34.14	30.75	28.98	32.39	29.34	27.84	33.36	29.33	27.15	39.57	34.68	31.71
SwinIR-ITSRN [†] [79]	38.22	34.75	32.63	34.26	30.75	28.97	32.42	29.38	27.85	33.46	29.34	27.12	39.60	34.75	31.74
SwinIR-LTE [39]	38.33	34.89	32.81	34.25	30.80	29.06	32.44	29.39	27.86	33.50	29.41	27.24	39.63	34.79	31.79
SwinIR-CiaoSR (ours)	38.38	34.91	32.84	34.33	30.82	29.08	32.47	29.42	27.90	33.65	29.52	27.42	39.67	34.84	31.91
						-			-		100 5			100	
Methods		Set5 [3]		5	Set14 [80		I	3100 [46		Ur	ban100 [29]	Ma	nga109 [47]
	$\times 6$	×8	$\times 12$	$\times 6$	×8	×12	$\times 6$	×8	×12	×6	×8	×12	×6	×8	×12
RDN-MetaSR [28]	29.04	29.96	-	26.51	24.97	-	25.90	24.83	-	23.99	22.59	-	-	-	-
RDN-LIIF [13]	29.15	27.14	24.86	26.64	25.15	23.24	25.98	24.91	23.57	24.20	22.79	21.15	27.33	25.04	22.36
RDN-ITSRN [†] [79]	29.32	27.25	24.86	26.68	25.17	23.28	26.01	24.93	23.58	24.23	22.81	21.16	27.45	25.04	23.35
RDN-LTE [39]	29.32	27.26	24.79	26.71	25.16	23.31	26.01	24.95	23.60	24.28	22.88	21.22	27.49	25.12	22.43
RDN-CiaoSR (ours)	29.46	27.36	24.92	26.79	25.28	23.37	26.07	25.00	23.64	24.58	23.13	21.42	27.70	25.40	22.63
SwinIR-MetaSR [28]	29.09	27.02	24.82	26.58	25.09	23.33	25.94	24.87	23.59	24.16	22.75	21.31	27.29	24.96	22.35
SwinIR-LIIF [13]	29.46	27.36	-	26.82	25.34	-	26.07	25.01	-	24.59	23.14	-	27.69	25.28	-
SwinIR-ITSRN [†] [79]	29.31	27.24	24.79	26.71	25.32	23.30	26.05	24.96	23.57	24.50	23.06	21.34	27.72	25.23	22.47
SwinIR-LTE [39]	29.50	27.35	-	26.86	25.42	-	26.09	25.03	-	24.62	23.17	-	27.83	25.42	-
SwinIR-CiaoSR (ours)	29.62	27.45	24.96	26.88	25.42	23.38	26.13	25.07	23.68	24.84	23.34	21.60	28.01	25.61	22.79

 CiaoSR achieves the best performance with all backbones on both in-scale and out-of-scale distributions

Qualitative comparison

 Our model is able to synthesize the SR images with sharper textures than other methods

Ablation Study

Urban100. We use RDN [88] as the backbone.

on on Network	××	×	1
$\times 2$	32.87	33.24	33.30
$\times 3 \times 4$	26.69	26.96	29.17
×6	24.22	24.50	24.58
	on Network $ \begin{array}{c} \times 2 \\ \times 3 \\ \times 4 \\ \times 6 \\ \times 8 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x x x on Network x x x $\times 2$ 32.87 33.24 $\times 3$ 28.82 29.10 $\times 4$ 26.69 26.96 $\times 6$ 24.22 24.50 $\times 8$ 22.80 22.98

Table 4. Ablation study on each component of our networks on Table 5. Ablation study on training our implicit model with different types of scales on Urban100.

Type	Training scale a		In-scale	Out-of-scale		
Турс	ITalling scale s	$\times 2$	$\times 3$	$\times 4$	$\times 6$	×8
	$s \in \{2\}$	33.13	27.01	25.60	22.27	22.09
Disconsta	$s \in \{3\}$	31.39	29.06	25.77	23.44	22.16
Disciele	$s \in \{4\}$	31.42	27.87	26.88	24.28	22.85
	$s \in \{2,3,4\}$	33.15	29.14	27.02	24.47	23.03
Continuous	$s \in [1, 4]$	33.30	29.17	27.11	24.58	23.13

Table 6. Comparison of (PSNR and SSIM) for different synthesis Table 7. Comparisons of model size, inference time and performance gain steps on Urban100 [29] and Manga109 [47]. of different models.

Type	Synthesis steps	Urban100 [29]		Manga109 [47]		Different models	Meta-SR [28]	LIIF [13]	ITSRN [79]	LTE [39]	CiaoSR
ijpe	oynalesis steps	PSNR	SSIM	PSNR	SSIM	Model size (M)	1.7	1.6	0.7	1.7	1.4
Multiple steps	$\rightarrow \times 2 \rightarrow \times 4 \rightarrow \times 12$	21.28	0.557	22.46	0.720	Inference time (ms)	237	171	343	148	528
	$\rightarrow \times 2 \rightarrow \times 12$	21.32	0.558	22.53	0.721	PSNR (dB)	26.55	26.68	26.77	26.81	27.11
One step	$\rightarrow \times 12$	21.42	0.561	22.63	0.723	Performance gain (dB)	-0.06	0.07	0.16	0.2	0.5

- Training with continuous scales can boost the performance
- Synthesis with one step is better than more steps
- Best performance, but with more inference time

Summary

New architecture:

• Propose a novel continuous implicit attention-in-attention network for arbitrary-scale image super-resolution

Best performance:

• Outperform all state-of-the-art methods

Good generalization ability:

 Generalize well on both in-scale and out-of-scale distributions

Good flexibility and applicability:

· Can be used behind any SR backbone to boost the performance

Thanks for your attention!