

Bidirectional Cross-Modal Knowledge Exploration for Video Recognition with Pre-trained Vision-Language Models

Wenhao Wu^{1,2} Xiaohan Wang³ Haipeng Luo⁴ Jingdong Wang² Yi Yang³ Wanli Ouyang^{5,1}

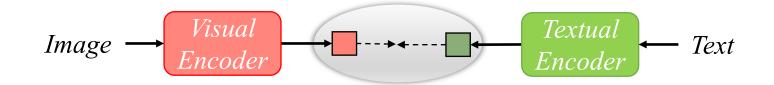
¹The University of Sydney ²Baidu Inc. ³Zhejiang University ⁴UCAS ⁵Shanghai AI Laboratory

Poster : TUE-PM-238

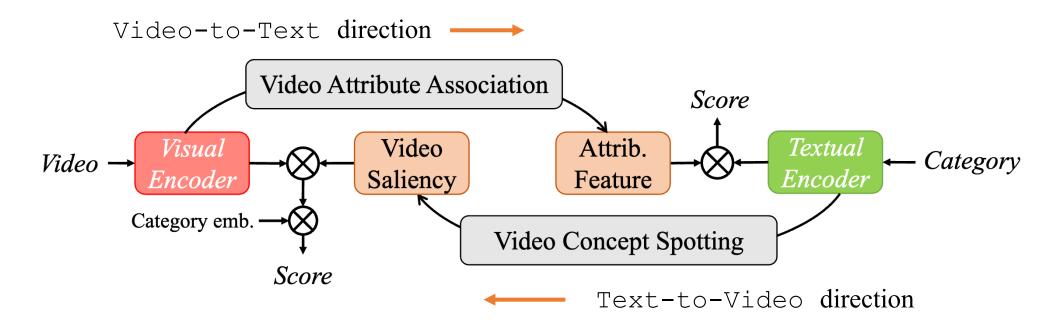
Code & Models

Key Innovation

(a) Pre-trained Vision-Language Models (VLMs) build a bridge between the visual and textual domains.

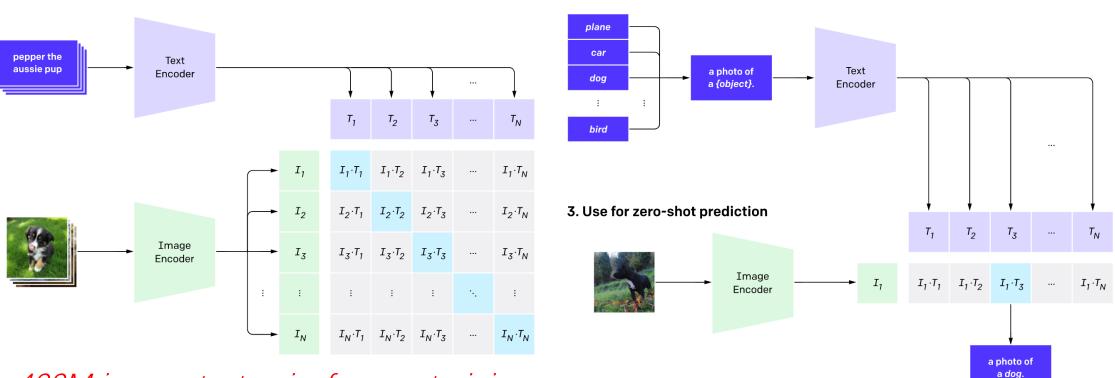


(b) **Bi**directional Knowledge Exploration (**BIKE**) for video recognition.



Background : CLIP

CLIP: A Web-scale Pre-trained Vision-Language Model



2. Create dataset classifier from label text

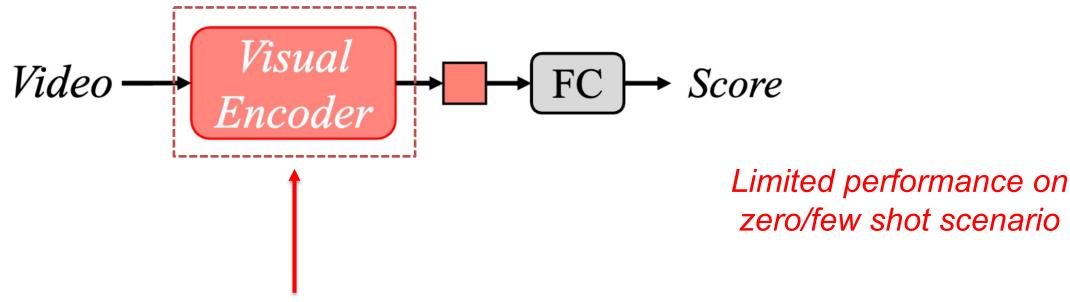
1. Contrastive pre-training

400M image-text pairs for pre-training

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *International Conference on Machine Learning*. PMLR, 2021.

Existing Works

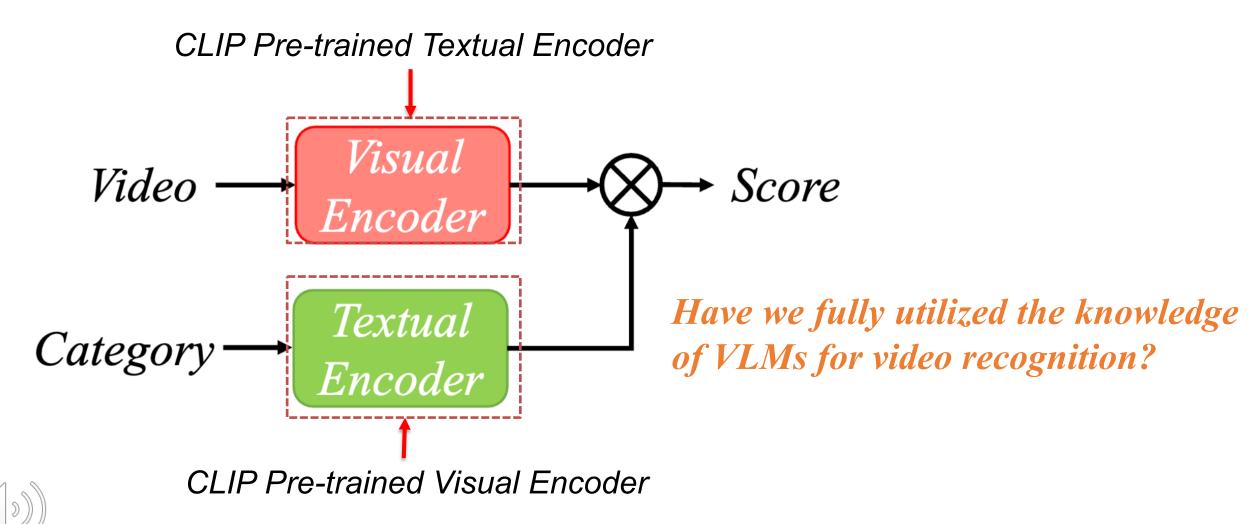
Vision-Only Paradigm: Traditional video recognition



CLIP Pre-trained Visual Encoder

Existing Works

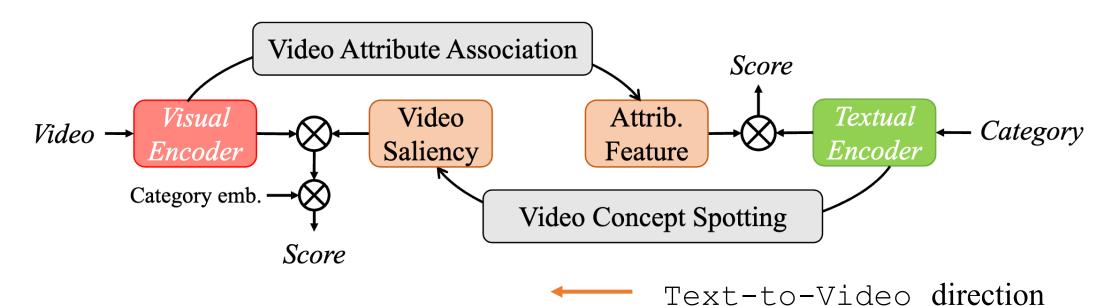
Vision-Text Paradigm: Category Embedding as Classifier



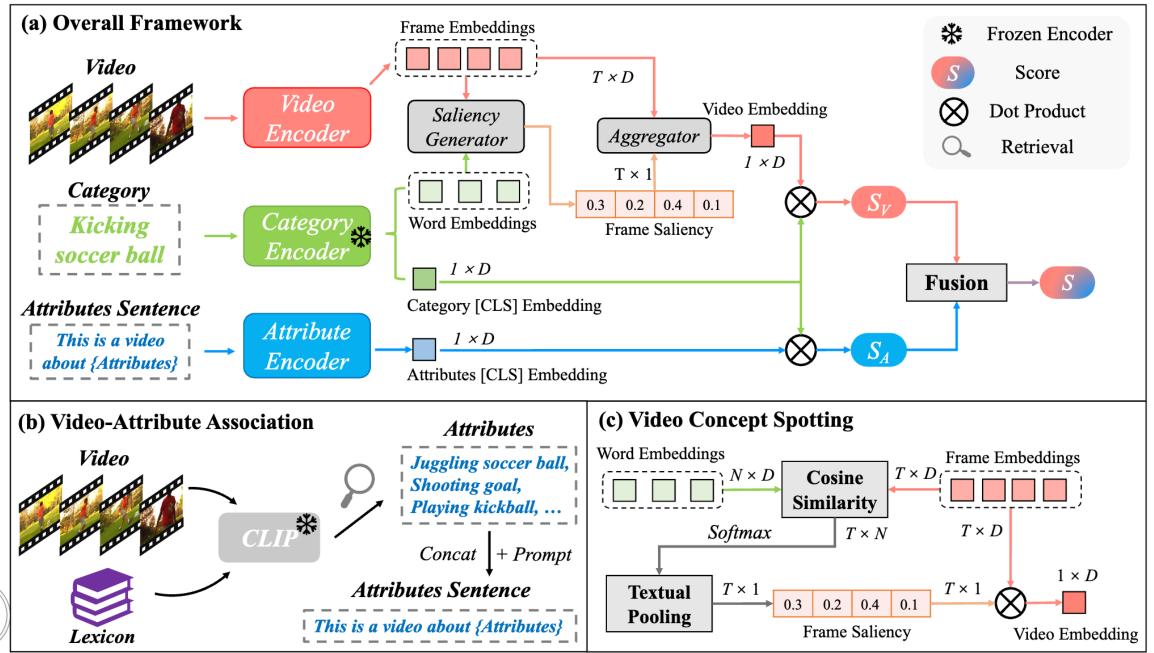
Our BIKE

Bidirectional Knowledge Exploration (BIKE) for video recognition.

Video-to-Text direction -----



Our BIKE



Learning Objectives

Video branchAttributes branch $\mathcal{L}_{V2C} = -\frac{1}{B} \sum_{i}^{B} \frac{1}{|\mathcal{K}(i)|} \sum_{k \in \mathcal{K}(i)} \log \frac{\exp(s(\mathbf{e_{ci}}, \mathbf{e_{vk}})/\tau)}{\sum_{j}^{B} \exp(s(\mathbf{e_{ci}}, \mathbf{e_{vj}})/\tau)}, \quad \mathcal{L}_{A2C} = -\frac{1}{B} \sum_{i}^{B} \frac{1}{|\mathcal{K}(i)|} \sum_{k \in \mathcal{K}(i)} \log \frac{\exp(s(\mathbf{e_{ci}}, \mathbf{e_{ak}})/\tau)}{\sum_{j}^{B} \exp(s(\mathbf{e_{ci}}, \mathbf{e_{aj}})/\tau)}, \quad \mathcal{L}_{A2C} = -\frac{1}{B} \sum_{i}^{B} \frac{1}{|\mathcal{K}(i)|} \sum_{k \in \mathcal{K}(i)} \log \frac{\exp(s(\mathbf{e_{ci}}, \mathbf{e_{aj}})/\tau)}{\sum_{j}^{B} \exp(s(\mathbf{e_{ci}}, \mathbf{e_{vj}})/\tau)}, \quad \mathcal{L}_{C2A} = -\frac{1}{B} \sum_{i}^{B} \frac{1}{|\mathcal{K}(i)|} \sum_{k \in \mathcal{K}(i)} \log \frac{\exp(s(\mathbf{e_{ck}}, \mathbf{e_{aj}})/\tau)}{\sum_{j}^{B} \exp(s(\mathbf{e_{cj}}, \mathbf{e_{vj}})/\tau)}, \quad \mathcal{L}_{C2A} = -\frac{1}{B} \sum_{i}^{B} \frac{1}{|\mathcal{K}(i)|} \sum_{k \in \mathcal{K}(i)} \log \frac{\exp(s(\mathbf{e_{ck}}, \mathbf{e_{aj}})/\tau)}{\sum_{j}^{B} \exp(s(\mathbf{e_{cj}}, \mathbf{e_{aj}})/\tau)}, \quad \mathcal{L}_{A} = \frac{1}{2} (\mathcal{L}_{A2C} + \mathcal{L}_{C2A}).$

Total Loss
$$\mathcal{L} = \mathcal{L}_V + \mathcal{L}_A$$
.

Experiments

- Experimental results:
 - Comparison to the state-of-the-art methods on action recognition.
 - Comparison on multi-label video recognition.
 - Comparison on few-shot video recognition.
 - Comparison on zero-shot video recognition.

Datasets:

- Kinetics-400: ~240K videos across 400 action categories;
- Kinetics-600: ~480K videos from 600 action categories;
- **UCF-101**: 13,320 videos, 101 realistic action categories;
- HMDB-51: 6,849 videos, 51 action classes.
- **ActivityNet-v1.3**: 19,994 untrimmed videos, 200 activity categories;
- **Charades**: 10K videos, 157 action classes.

Experimental Results

Comparisons with SOTAs on Action Recognition

Results on Kinetics-400 dataset

Results on ActivityNet dataset

Method	Top-1	mAP
ListenToLook [17]	-	89.9
MARL [55]	85.7	90.1
DSANet [59]	-	90.5
TSQNet [60]	88.7	93.7
NSNet [61]	90.2	94.3
BIKE ViT-L	94.7	96.1

Results on Charades dataset

Frames	mAP
-	25.2
16	35.3
16+64	42.5
16	43.4
32	44.3
16	50.4
	16+64 16 32

Method	Venue	Input	Pre-training	Top-1(%)	Top-5(%)	Views	FLOPs	Param
NL I3D-101 [49]	CVPR'18	128×224^2	ImageNet-1K	77.7	93.3	10×3	359×30	61.8
$MVFNet_{En}$ [54]	AAAI'21	24×224^{2}	ImageNet-1K	79.1	93.8	10×3	188×30	-
TimeSformer-L [2]	ICML'21	96×224^{2}	ImageNet-21K	80.7	94.7	1×3	2380×3	121.4
ViViT-L/16×2 [1]	ICCV'21	32×320^{2}	ImageNet-21K	81.3	94.7	4×3	3992×12	310.8
VideoSwin-L [30]	CVPR'22	32×384^{2}	ImageNet-21K	84.9	96.7	10×5	$2107{\times}50$	200.0
Methods with large-scale im	age pre-train	ing						
ViViT-L/16×2 [1]	ICCV'21	32×320^{2}	JFT-300M	83.5	95.5	4×3	3992×12	310.8
ViViT-H/16×2 [1]	ICCV'21	32×224^{2}	JFT-300M	84.8	95.8	4×3	8316×12	647.5
TokenLearner-L/10 [40]	NeurIPS'21	32×224^{2}	JFT-300M	85.4	96.3	4×3	4076×12	450
MTV-H [63]	CVPR'22	32×224^{2}	JFT-300M	85.8	96.6	4×3	3706×12	-
CoVeR [68]	arXiv'21	16×448^{2}	JFT-300M	86.3	-	1×3	-	-
CoVeR [68]	arXiv'21	16×448^{2}	JFT-3B	87.2	-	1×3	-	-
Methods with large-scale im	age-language	e pre-trainii	ng					
CoCa ViT-giant [65]	arXiv'22	6×288^{2}	JFT-3B+ALIGN-1.8B	88.9	-	-	-	2100
VideoPrompt ViT-B/16 [21]	ECCV'22	16×224^{2}	WIT-400M	76.9	93.5	-	-	-
ActionCLIP ViT-B/16 [48]	arXiv'21	32×224^{2}	WIT-400M	83.8	96.2	10×3	563×30	141.7
Florence [66]	arXiv'21	32×384^{2}	FLD-900M	86.5	97.3	4×3	-	647
ST-Adapter ViT-L/14 [35]	NeurIPS'22	32×224^{2}	WIT-400M	87.2	97.6	3×1	8248	-
AIM ViT-L/14 [64]	ICLR'23	32×224^{2}	WIT-400M	87.5	97.7	3×1	11208	341
EVL ViT-L/14 [27]	ECCV'22	32×224^{2}	WIT-400M	87.3	-	3×1	8088	-
EVL ViT-L/14 [27]	ECCV'22	32×336^{2}	WIT-400M	87.7	-	3×1	18196	-
X-CLIP ViT-L/14 [34]	ECCV'22	16×336^{2}	WIT-400M	87.7	97.4	4×3	3086×12	-
Text4Vis ViT-L/14 [58]	AAAI'23	32×336^{2}	WIT-400M	87.8	97.6	1×3	3829×3	230.7
		16×224^{2}		88.1	97.9	4×3	830×12	230
BIKE ViT-L/14	CVPR'23	8×336^2	WIT-400M	88.3	98.1	4×3	932×12	230
		16×336 ²		88.7	98.4	4×3	1864×12	230

Experimental Results

Comparisons on **few-shot** action recognition across four video datasets.

Method	Shot	HMDB	UCF	ANet	K400
VideoSwin [30]	2	20.9	53.3	-	-
VideoPrompt [21]	5	56.6	79.5	-	58.5
X-Florence [34]	2	51.6	84.0	-	-
	1	72.3	95.2	86.6	73.5
BIKE ViT-L	2	73.5	96.1	88.7	75.7
	5	77.7	96.5	90.9	78.2

Comparisons on **zero-shot** video recognition across four video datasets.

Method	UCF* / UCF	HMDB* / HMDB	ActivityNet*/ ActivityNet	Kinetics-600
GA [33]	17.3±1.1/-	19.3±2.1 / -	-	-
TS-GCN [16]	34.2±3.1 / -	23.2±3.0/-	-	-
E2E [3]	44.1 / 35.3	29.8 / 24.8	26.6 / 20.0	-
DASZL [23]	48.9±5.8 / -	- / -	-	-
ER [8]	51.8±2.9/-	35.3±4.6 / -	-	42.1 ± 1.4
ResT [26]	58.7±3.3 / 46.7	41.1±3.7 / 34.4	32.5 / 26.3	-
BIKE ViT-L	86.6±3.4 / 80.8	61.4±3.6 / 52.8	86.2±1.0 / 80.0	68.5±1.2

* denotes randomly selecting half of the test dataset's classes for evaluation, repeating the process ten times, and reporting the mean accuracy with standard deviation.

Visualization

Visualization of (Top) temporal saliency and (Bottom) attributes.

Conclusion

- We propose a novel framework called **BIKE** that explores bidirectional knowledge from pre-trained vision-language models for video recognition.
- In the Video-to-Text direction, we introduce the Video-Attributes Association mechanism to generate extra attributes for complementary video recognition.
- In the Text-to-Video direction, we introduce the Video Concept Spotting mechanism to generate temporal saliency, which is used to yield the compact video representation for enhanced video recognition.
- Our BIKE achieves state-of-the-art performance in most scenarios, e.g., general, zero-shot, and few-shot recognition.

THANKS

Codes & Models https://github.com/whwu95/BIKE

Contact
Wenhao Wu
Email: <u>whwu.ucas@gmail.com</u>
Homepage:
https://whwu95.github.io

