Topology-Guided Multi-Class Cell Context Generation for Digital Pathology

Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel Saltz and Chao Chen

Topology-Guided Multi-Class Cell Context Generation for Digital Pathology

Topology-Guided Multi-Class Cell Context Generation for Digital Pathology

Introduction

- Pathology image analysis suffers from **limited annotations**.
- Augment labeled data with synthetic labeled data.
- Generating pathology images usually involves two steps:
 - 1. Generating spatial layout of cells . 2. Filling in stains and textures.
- Cell Context
 - **Important** for pathology data analysis.

 - The arrangement of cells. Their spatial co-localization.

Cell Configuration Descriptors

Challenges:

Hard for models to learn the underlying distribution.

Effective cell configuration descriptors needs to capture:

- 1. Structural patterns such as clusters and holes of a reference cell layout. Topological Features
- 2. Spatial co-localization of different types of cells. Spatial Statistics

¹ Edelsbrunner et al. Computational Topology an Introduction. American Mathematical Society (AMS) 2010.

2. Spatial Statistics Features

Cross K-functions (Ripley's K)²

- Describes the distribution of target class of points surrounding a source.
- Cells types co-localization

Characterize holes

² Ripley, B.D. The second-order analysis of stationary point processes, Journal of Applied Probability 13 (2), 255–266, 1976.

Matching Structures (Gaps/Holes)

- Goal: Gen. and Ref. layouts have similar spatial distribution patterns.
- Find correspondence between holes in the generated and the reference layouts.

Match based on size (persistence) and spatial context (cross K functions)

Cell Configuration Loss \mathcal{L}_{cc}

Matched locations should have neighborhoods w/ similar spatial context.

i.e., have similar values in the multi-class, multi-scale density maps.

Cells Layout Generation: Sample Results

Cells Layout Evaluation

• Cross K-function:

	Cross K-function - MAE			Cross K-function - RMSE				
Method	Lym.	Tumor	Stro.	Mean	Lym.	Tumor	Stro.	Mean
w/o Spatial Descriptors + w/o \mathcal{L}_{cc}	0.555	0.096	0.424	0.359	0.829	0.127	0.666	0.541
w/o \mathcal{L}_{cc}	0.592	0.126	0.402	0.373	0.861	0.176	0.683	0.573
w/o Cross K-function Descriptor	0.417	0.154	0.431	0.334	0.602	0.226	0.583	0.470
Ours	0.413	0.146	0.357	0.306	0.611	0.201	0.509	0.440

• Persistence Diagram (PD):

		PD –	EMD		PD - Cell Configuration Mat			tching
Method	Lym.	Tumor	Stro.	Mean	Lym.	Tumor	Stro.	Mean
w/o Spatial Descriptors + w/o \mathcal{L}_{cc}	0.28	0.082	0.19	0.184	0.8	1.74	1.66	1.4
w/o \mathcal{L}_{cc}	0.249	0.203	0.156	0.202	0.9	1.69	1.79	1.46
w/o Cross K-function Descriptor	0.237	0.167	0.17	0.191	0.75	1.74	1.77	1.42
Ours	0.246	0.141	0.165	0.184	0.74	1.64	1.71	1.36

Texture Generation: Sample Results

Lymphocyte Tumor cell Stromal cell

Multi-Class Cell Classification

• Train with augmentation data generated by our method.

	F-Score					
Method	Lym.	Tumor	Stro.	Mean		
U-Net	0.498	0.744	0.476	0.572		
U-Net + Aug. (Rand.)	0.625	0.735	0.472	0.611		
U-Net + Aug. (Ours)	0.65	0.768	0.511	0.644		
MCSpatNet	0.635	0.785	0.553	0.658		
MCSpatNet + Aug. (Rand.)	0.652	0.772	0.506	0.644		
MCSpatNet + Aug. (Ours)	0.678	0.8	0.522	0.667		

Conclusion

- First time to explicitly model and generate realistic multi-class cell layouts with desirable spatial configuration.
- Propose novel cell configuration loss that uses persistent homology and spatial statistics to model the cell context.
- Qualitative and quantitative results show that that our method generates cell layouts with **realistic spatial and structural patterns**.
- Improve performance in **downstream tasks** such as cell classification.
- Future Work:
 - Modeling more complex structures.
 - Applying to **other downstream tasks**.

Conclusion

- First time to explicitly model and generate realistic multi-class cell layouts with desirable spatial configuration.
- Propose novel cell configuration loss that uses persistent homology and spatial statistic to model the cell of each propose the configuration loss that uses persistent homology
 Qualitative an quarter of the cell of t
- Qualitative and quarter class how have a renethod generates cell lavouts with realistic spatial and structural patterns.
- Improv

Poster Session: TUE-AM-316 fication.

- Future Work:
 - Modeling more complex structures.
 - Applying to other downstream tasks.