SVGformer Representation Learning for Continuous Vector Graphics using Transformers

Defu Cao¹, Zhaowen Wang², Jose Echevarria², Yan Liu¹

¹University of Southern California ²Adobe Research

SVG former captures both geometric information and curve semantic information to handle long-term sequence relationships in SVG.

SVG former can take original continuous format as input which can effectively reduce the token space in the embedding layer.

SVG former achieves new state-of-the-art performance on four downstream tasks of both Font and Icon dataset.

Vector Graphics: Representation

- Bitmap
 - Pixel level
 - Hard to represent detail attributes
- Scalable Vector Graphics (SVG):
 - Geometric primitives
 - Lines, circles, polygons, splines
 - Commands of varying length
 - Long term dependencies
 - Fonts
 - Stylistic features per family

Challenges

- Learnable Vector tokenization with continuous variables
- Long term sequence relationship:
 - Geometric information for 2D sequence relationship is needed

Methods	Font-MF	SVG-VAE	Im2Vec	DeepVecFont	DeepSVG	DeepLayout	Ours
Encoding Modality	Seq	Img	Img	lmg&Seq	Seq	Seq	Seq
Decoding Modality	Seq	lmg&Seq	Seq	lmg&Seq	Seq	Seq	Seq
Model Arch	GP-LVM	VAE-based	RNN Encoder Decoder	LSTM+CNN Encoder Decoder	Transformer- based	Transformer-based	Transformer- based
Seq Format	Keypoints	Commands	Keypoints	Commands	Commands	Commands	Commands
Geometric information	-	-	-	-	-	-	Segment

Method – SVGformer Architecture

Method – Key Technologies

Geometric Information Extraction

Geometric Self-Attention Module

Results – Fonts, Reconstruction

<u>Reconstruction</u> results on various glyphs. From left to right, the original SVG (black), DeepSVG (orange), LayoutTransformer (green) and our SVGformer (blue), respectively.

Results – Fonts, Retrieval

- <u>Retrieval</u> results from all glyphs. Results for DeepSVG are shown in orange, and results for SVGformer in blue.
- SVGformer always retrieves the same glyph as the query when searching from all glyphs.

Results – Fonts, Retrieval

- <u>Retrieval</u> results from all glyphs. Results for DeepSVG are shown in orange, and results for SVGformer in blue.
- SVGformer can return results in more similar styles when searching for a specific glyph.

Results – Fonts, Interpolate

 <u>Interpolations</u> between glyphs. Results for DeepSVG are shown in orange, and results for SVGformer in blue. The first and last columns are the given glyphs to be interpolated, and the middle columns are the interpolations.

SVG former can give more

with fewer artifacts and

meaningful and smooth results

contortions when handling both

translations and deformations

Regular to Italic. Andika New Basic, 'H'

Thin to Black. Saira Semi Condensed, 'f'

•

Results – Icons, Reconstruction

<u>Reconstruction</u> results on Icons. From left to right, the original SVG (black), DeepSVG (orange), LayoutTransformer (green) and our SVGformer (blue), respectively.

Results – Icons, Retrieval

Results – Icons, Interpolate

A Adobe

Viterbi School of Engineering

T Γ $\left(\left] \right] \right)$ כן [] $\hat{}$ $\overline{()}$ D B 00 4 00 117 $\left(00 \right)$ $\left(00 \right)$][20 $\overline{}$ L L. S

SVGformer

Representation Learning for Continuous Vector Graphics using Transformers

Defu Cao¹, Zhaowen Wang², Jose Echevarria², Yan Liu¹

¹University of Southern California ²Adobe Research

