Augmentation Matters: A Simple-yet-Effective Approach to Semi-supervised Semantic Segmentation

Zhen Zhao, Lihe Yang, Sifan Long, Jimin Pi, Luping Zhou, Jingdong Wang

Brief Introduction

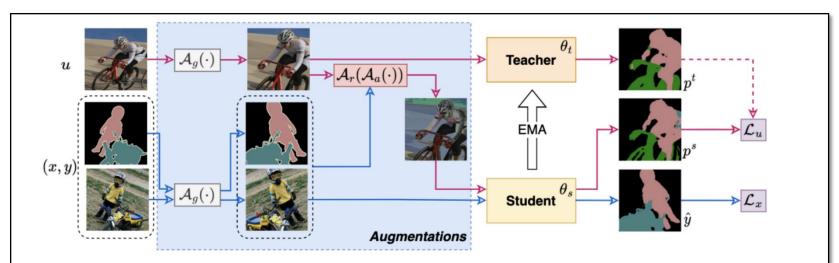


Figure 2. Diagram of AugSeg. In a standard teacher-student framework, AugSeg trains the student model, parameterized by θ_s , on labeled data (x, y) and unlabeled data u simultaneously, via minimizing the corresponding supervised loss \mathcal{L}_x and unsupervised consistency loss \mathcal{L}_u , respectively. The teacher model, parameterized by θ_t , is updated by the exponential moving averaging (EMA) of θ_s , and generates the pseudo-label on unlabeled data, p^t . The core of AugSeg is to apply various augmentation techniques on input unlabeled samples, including the weak geometrical augmentation \mathcal{A}_g , the random intensity-based augmentation \mathcal{A}_r and the adaptive label-injecting augmentation \mathcal{A}_a . The red and blue lines represent the forward path of labeled and unlabeled data, respectively. The dashed line means "stop gradient".

The University of Sydney

Background and Motivation

> Proposed Method

> Experiments

➢ Conclusion

The University of Sydney

Background

>Why Semi-supervised Semantic Segmentation (SSS)?

- The success of supervised semantic segmentation depends closely on large datasets with high-quality pixel-level annotations.
- Delicate and dense pixel-level labelling is costly and time-consuming, which becomes a significant bottleneck in practical applications with limited labelled data.

> How recent SSS work? (leveraging the unlabeled data)

- Pseudo-labeling: Train on labeled data and then generate pseudo-labels on unlabeled data, iteratively adding high-confidence predicted unlabeled data to labeled set.
- Consistency regularization: Apply data or model perturbations and enforce the prediction consistency between two differently-perturbed views for unlabeled data.

Motivation

Existing studies are Complicated

>Augmentations

Image-levelFeature-level

≻Auxiliary tasks

Contrastive lossMultiple branchCo-training

> Pseudo-rectifying

Various filtering
 Correcting networks
 Prior-based
 The University of Sydney

Method	Augmentations		More Supervision			Pseudo-rectifying		
Wiethou	SDA	FT	MBSL	CT	UCL	UAFS	ACN	PR
CCT [42]		\checkmark	 ✓ 	\checkmark				
ECS [36]			1				\checkmark	
SSMT [24]	1		1			\checkmark		
PseudoSeg [55]	1					\checkmark		
CAC [29]			1		\checkmark	1		
DARS [22]	1		1					\checkmark
AEL [23]	1							\checkmark
PC ² Seg [53]	\checkmark		1		\checkmark	\checkmark		
C3-Semiseg [54]	1				\checkmark	\checkmark		\checkmark
SimpleBase [48]	1		1			\checkmark		
ReCo [32]	~				\checkmark	\checkmark		
CPS [7]	\checkmark			\checkmark				
ST++ [47]	 ✓ 		1					
ELN [28]	\checkmark		\checkmark				\checkmark	
USRN [19]	\checkmark		1			\checkmark		\checkmark
PSMT [34]	\checkmark	\checkmark	1			\checkmark		
U ² PL [45]	\checkmark				\checkmark	\checkmark		\checkmark
AugSeg (ours)	✓							
		on v	ve m	alze	it c	imn	lor?	

Motivation (Cont.)

> What is the key in current dominant CR-based approaches?

➢ to produce prediction disagreements on unlabeled data,

➤ such that unlabeled samples can be leveraged to train models even if their labeled information is un-known.

> How can we produce such disagreement?

- Data / model / feature perturbations
 - **Data-level:** auto-augmentations, mix-based augmentations (our focus)
 - Model-level: different architectures, dropout, stochastic depth

 \succ We argue that:

Various data augmentations should be adjusted to better adapt to the semi-supervised scenarios instead of directly applying these techniques from supervised learning.

Method

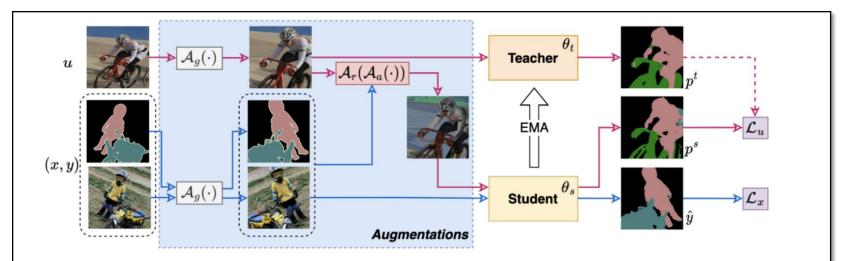
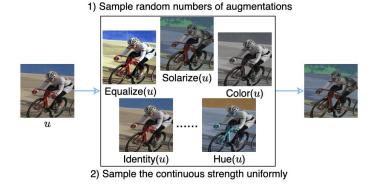


Figure 2. Diagram of AugSeg. In a standard teacher-student framework, AugSeg trains the student model, parameterized by θ_s , on labeled data (x, y) and unlabeled data u simultaneously, via minimizing the corresponding supervised loss \mathcal{L}_x and unsupervised consistency loss \mathcal{L}_u , respectively. The teacher model, parameterized by θ_t , is updated by the exponential moving averaging (EMA) of θ_s , and generates the pseudo-label on unlabeled data, p^t . The core of AugSeg is to apply various augmentation techniques on input unlabeled samples, including the weak geometrical augmentation \mathcal{A}_g , the random intensity-based augmentation \mathcal{A}_r and the adaptive label-injecting augmentation \mathcal{A}_a . The red and blue lines represent the forward path of labeled and unlabeled data, respectively. The dashed line means "stop gradient".

Method (cont.)

Random Intensity-based Augmentations

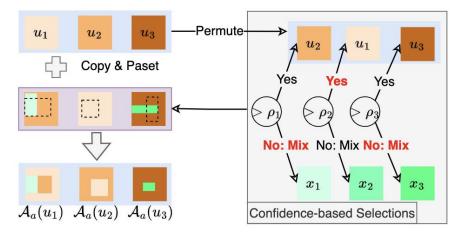
- Sample the distorting degree **uniformly** in a **continuous** space instead of a <u>finite discrete</u> space.
- Sample a **random number** of augmentations, bounded by a maximum value of k, from an augmentation pool instead of using a <u>fixed</u> number.
- Remove strong transformations e.g. Invert operations



Method (cont.)

Adaptive CutMix-based augmentations

$$egin{aligned} &
ho_i = &rac{1}{H imes W} \sum_{j=1}^{H imes W} \max(p_i^t(j))(1 - rac{-\sum p_i^t(j) \log p_i^t(j)}{\log N}) \ &u_n^{'} \leftarrow M_n \odot u_n + (\mathbf{1} - M_n) \odot x_n, \end{aligned}$$



$$\mathcal{A}_{a}(u_{m}) \leftarrow M_{m} \odot u_{m} + (\mathbf{1} - M_{m}) \odot u_{n}^{'},$$

The University of Sydney

Figure 4. A visualization of adaptive label-injecting CutMix augmentation in a mini-batch. x_i and u_i denote the labeled and unlabeled crops, respectively. ρ_i denote the confidence score for *i*-th unlabeled sample. The core idea of \mathcal{A}_a is that, these less confident unlabeled samples, with lower values of ρ_i , are more likely to be aided (mixed) by these confident labeled samples.

Experiments: Ablation Study

A	AugSe	g	mI	oU
MT	\mathcal{A}_r	\mathcal{A}_{a}	VOC (366)	Citys (744)
			61.65 (supervised)	74.14 (supervised)
\checkmark			69.06 (7.41 [†])	75.96 (1.82↑)
\checkmark	\checkmark		72.41 (10.76↑)	77.29 (3.15)
\checkmark		\checkmark	74.33 (12.68)	77.44 (3.30↑)
\checkmark	\checkmark	\checkmark	76.17 (14.52 [†])	78.76 (4.62 [†])

Table 6. Ablation studies on our AugSeg. "MT" means the standard mean-teacher semi-supervised framework. A_r and A_a represent the two main augmentation strategies, the random intensitybased and adaptive label-injecting augmentations, respectively. Improvements over the supervised baseline are highlighted in blue.

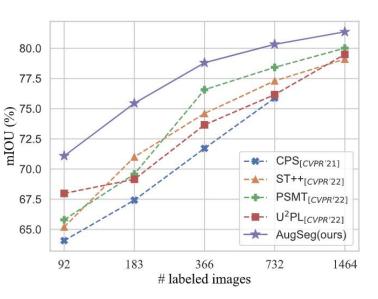
λ_u	0.0	0.5	1.0	1.5	2.0
VOC (366)	61.65	75.21	76.17	75.95	77.05
Citys (744)	74.14	77.02	78.76	78.99	78.68

Table 7. Ablations on the loss weight λ_u , set as 1.0 by default.

k	0	1	2	3	4
VOC (366)	74.38	75.50	76.10	76.17	76.32
Citys (186)					
Citys (744)	77.44	78.34	78.11	78.76	78.48

Table 8. Ablations on the maximum number of selected intensitybased augmentations, using R50 as the encoder. k = 3 by default.

Experiments: Comparison with SOTAs



Method			ResNet-5	0		ResNet-101			
		1/16 (662) 1/8 (1323) 1/4 (2646)	1/16 (662)	1/8 (1323)	1/4 (264	.6)	
Supervised		63.72	68.49	72.46	67.76	72.13	75.04		
MT [44]		66.77	70.78	73.22	70.59	73.20	76.62		
CCT [42]		65.22	70.87	73.43	67.94	73.00	76.17		
GCT [27]		64.05	70.47	73.45	69.77	73.30	75.25	5	
CPS [7]		68.21	73.20	74.24	72.18	75.83	77.55		
CPS w/ CutM	ix [7]	71.98	73.67	74.90	74.48	76.44	77.68		
ST++ [47]		72.60	74.40	75.40	74.50	76.30	76.60		
PS-MT [34]		72.83	75.70	76.43	75.50	78.20	78.72		
AugSeg		74.66	75.99	77.16	77.01	77.31	78.82		
Supervised [‡]		67.66	71.91	74.53	70.63	75.02	76.47		
$U^2 PL^{\ddagger} * [45]$		74.74	77.44	77.51	77.21	79.01	79.30		
AugSeg [‡]		77.28	78.27	78.24	79.29	81.46	80.50		
Method		ResNet-50				ResNet-101			
Method	1/16(1	86) 1/8(372) 1/4(74	1/2(1488) 1/16(186)	1/8(372)	1/4(744)	1/2(1488)	
Supervised	63.3	34 68	.73 74.1	4 76.62	64.77	71.64	75.24	78.03	
MT [44]	66.1	4 72	.03 74.4	7 77.43	68.08	73.71	76.53	78.59	
CCT [42]	66.3	35 72	.46 75.6	8 76.78	69.64	74.48	76.35	78.29	
GCT [27]	65.8	31 71	.33 75.3	0 77.09	66.90	72.96	76.45	78.58	
CPS [7]	69.7	9 74	.39 76.8	5 78.64	70.50	75.71	77.41	80.08	
CPS * [7]	-			-	69.78	74.31	74.58	76.81	
PS-MT† [34]	-	75	.76 76.9	2 77.64	-	76.89	77.60	79.09	
U ² PL [45]	69.0	3 73	.02 76.3	1 78.64	70.30	74.37	76.47	79.05	
AugSeg	73.7	73 76	.49 78.7	6 79.33	75.22	77.82	79.56	80.43	

Conclusion

- We propose a simple-yet-effective SSS framework, AugSeg, which follows a standard two-branch teacher-student framework to train models on labeled and unlabeled data jointly.
- We break the trend of SSS studies that integrate increasingly complex designs, and revise the widely-adopted data augmentations to better adapt to SSS tasks by injecting labeled information adaptively and simplifying the standard RandomAug with a highly random design.
- Without any additional complicated designs, AugSeg readily obtains new SOTA performance on popular SSS benchmarks under different partition protocols.

Thank You

