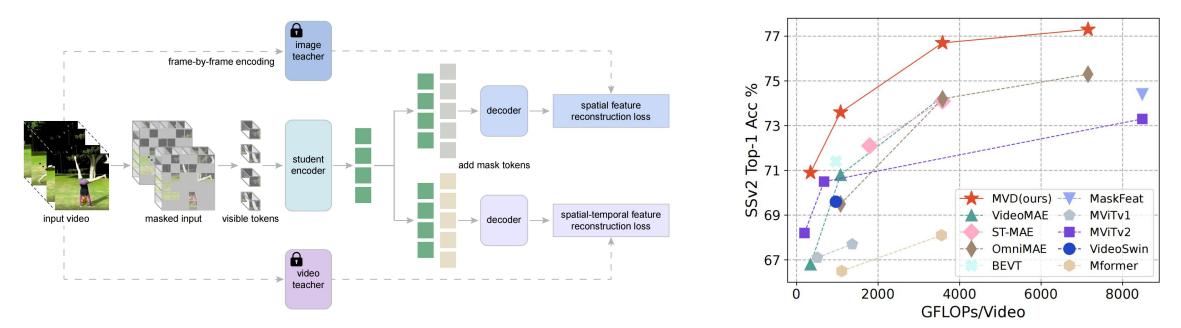
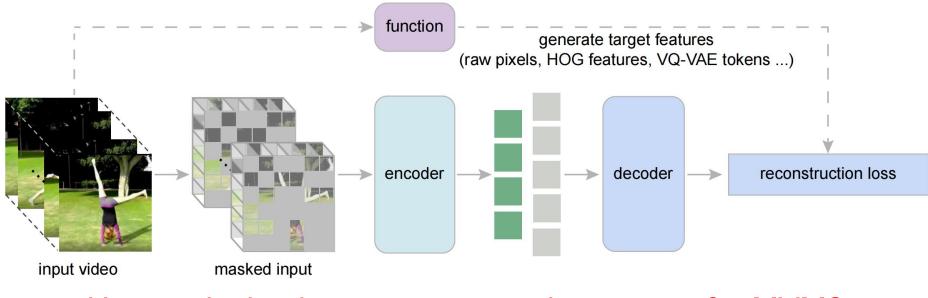


Masked Video Distillation: Rethinking Masked Feature Modeling for Self-supervised Video Representation Learning

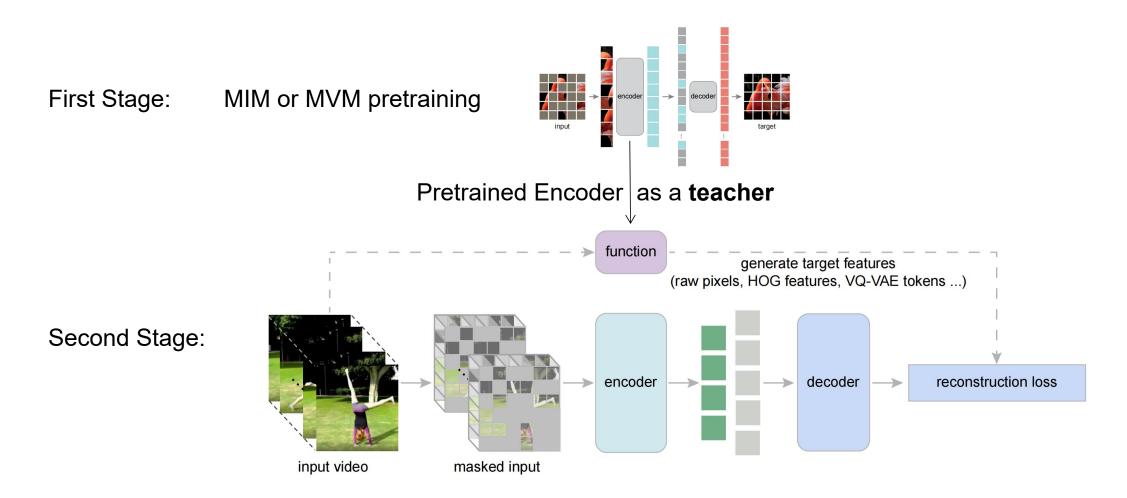

Rui Wang, Dongdong Chen, Zuxuan Wu, Yinpeng Chen, Xiyang Dai, Mengchen Liu, Lu Yuan, Yu-Gang Jiang

Poster: TUE-PM-209

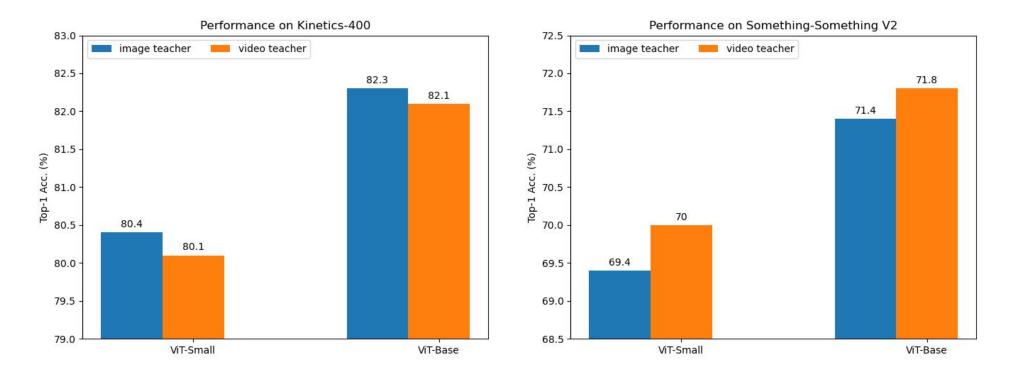
Code repo: https://github.com/ruiwang2021/mvd


Overview

- MVD is a self-supervised video representation learning method.
- We study how to design better target features for masked video modeling.
- MVD reconstructs high-level features encoded by pretrained image&video models.
- MVD achieves SoTA on various video downstream tasks.

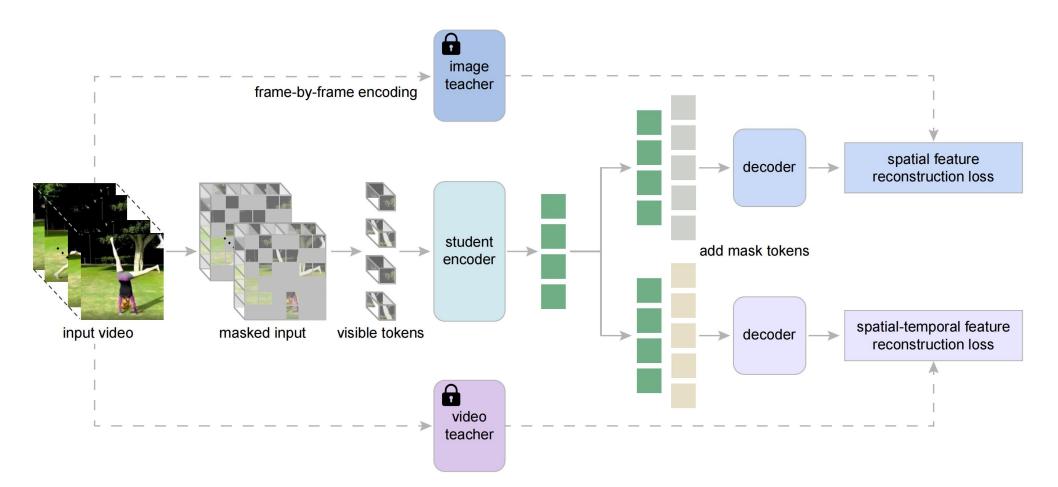

Masked Video Modeling (MVM)

- A paradigm for self-supervised learning:
 - reconstructs features of masked input regions (patches).
- Previous works: reconstruct low-level features of masked patches.
 - raw pixels, HOG features ...

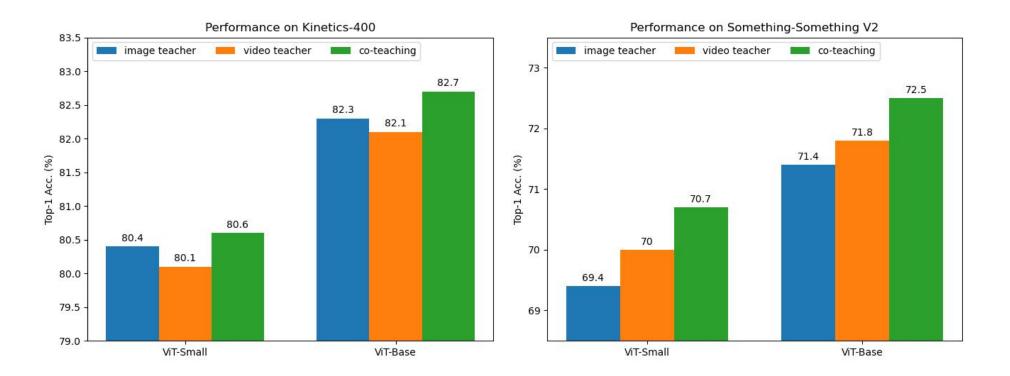

How to design better reconstruction targets for MVM?

Masked Video Distillation

High-level Features as targets of MVM


Comparison between different teachers

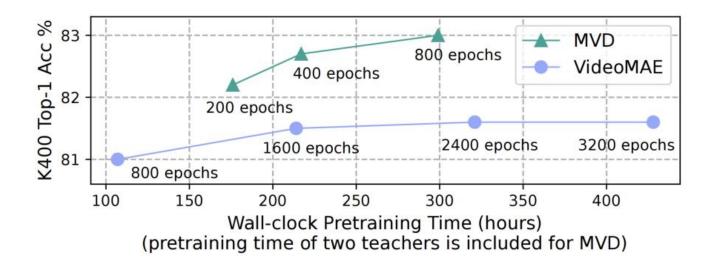
- Image teachers: ViT pretrained on IN-1K with Masked Image Modeling (MIM)
- Video teachers: ViT pretrained on K400 with Masked Video Modeling (MVM)


Students distilled with different teachers exhibit different properties

Spatial-temporal Co-teaching

Masked Video Distillation (MVD) Framework

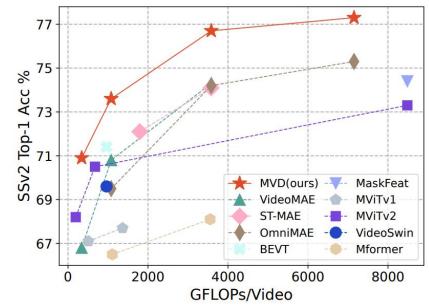
Comparison between different teachers



- Image teachers: ViT pretrained on IN-1K with Masked Image Modeling (MIM)
- Video teachers: ViT pretrained on K400 with Masked Video Modeling (MVM)

Co-teaching outperforms distillation with one single teacher in MVD

Comparison with VideoMAE


student	teacher	K400 top-1		SSv2 top-1		
		ViMAE	MVD	ViMAE	MVD	
ViT-S	ViT-B	79.0	80.6 1.6	66.4	70.7 †4.3	
ViT-S	ViT-L	79.0	81.0 ^2.0	66.4	70.9 †4.5	
ViT-B	ViT-B	81.5	82.7 1.2	69.7	72.5 ^2.8	
ViT-B	ViT-L	81.5	83.4 †1.9	69.7	73.7 †4.0	
ViT-L	ViT-L	85.2	86.0 ↑0.8	74.0	76.1 ^2.1	

MVD outperforms VideoMAE by clear margins across different model scales

Comparison to State-of-the-art

method	extra data	top-1	top-5	GFLOPs	Param
supervised				·	
NL I3D R101 [65]	-	77.3	93.3	359×30	62
ip-CSN-152 [59]	-	77.8	92.8	109×30	33
SlowFast NL [22]		79.8	93.9	234×30	60
X3D-XL [20]	55	79.1	93.9	48×30	11
MViTv1-B [18]	22	80.2	94.4	170×5	37
VideoSwin-B [42]	IN-1K	80.6	94.6	282×12	88
Uniformer-B [36]	IN-1K	83.0	95.4	259×12	50
TimeSformer [4]	IN-21K	80.7	94.7	2380×3	121
Mformer-B [47]	IN-21K	79.7	94.2	370×30	109
Mformer-L [47]	IN-21K	80.2	94.8	1185×30	382
ViViT-L FE [1]	IN-21K	81.7	93.8	3980×3	N/A
VideoSwin-L [42]	IN-21K	83.1	95.9	604×12	197
self-supervised					
VIMPAC ViT-L [55]	HowTo100M	77.4	N/A	$N/A \times 30$	307
BEVT Swin-B [63]	IN-1K	81.1	N/A	282×12	88
MaskFeat MViT-S [67]	-	82.2	95.1	71×10	36
VideoMAE ViT-S [57]		79.0	93.8	57×15	22
VideoMAE ViT-B [57]	-	81.5	95.1	180×15	87
VideoMAE ViT-L [57]		85.2	96.8	597×15	305
VideoMAE ViT-H [57]	-	86.6	97.1	1192×15	633
ST-MAE VIT-B [21]	-	81.3	94.9	180×21	87
ST-MAE Vit-L [21]	-	84.8	96.2	598×21	304
ST-MAE Vit-H [21]		85.1	96.6	1193×21	632
OmniMAE ViT-B [25]	IN-1K	80.8	N/A	180×15	87
OmniMAE ViT-L [25]	IN1K+SSv2	84.0	N/A	597×15	305
OmniMAE ViT-H [25]	IN1K+SSv2	84.8	N/A	1192×15	633
MVD-S (Teacher-B)	IN-1K	80.6	94.7	57×15	22
MVD-S (Teacher-L)	IN-1K	81.0	94.8	57×15	22
MVD-B (Teacher-B)	IN-1K	82.7	95.4	180×15	87
MVD-B (Teacher-L)	IN-1K	83.4	95.8	180×15	87
MVD-L (Teacher-L)	IN-1K	86.0	96.9	597×15	305
MVD-L (Teacher-L) †	IN-1K	86.4	97.0	597×15	305
$MVD\text{-}H \text{ (Teacher-H) } \dagger$	IN-1K	87.3	97.4	1192×15	633

Something-Something v2

method	extra data	Param	UCF101	HMDB51	
VideoMoCo R2+1D [50]	K400	15	78.7	49.2	
MemDPC R2D3D [30]	K400	32	86.1	54.5	
Vi ² CLR S3D [12]	K400	9	89.1	55.7	
CORP Slow-R50 [35]	K400	32	93.5	68.0	
CVRL Slow-R50 [53]	K400	32	92.9	67.9	
CVRL Slow-R152 [53]	K600	328	94.4	70.6	
hoBYOL Slow-R50 [24]	K400	32	94.2	72.1	
VIMPAC Vit-L [60]	HowTo100M	307	92.7	65.9	
VideoMAE ViT-B [61]	K400	87	96.1	73.3	
MVD-B (Teacher-B)	IN-1K+K400	87	97.0	76.4	
MVD-B (Teacher-L)	IN-1K+K400	87	97.5	79.7	

UCF-101 & HMDB-51

method	extra data	extra labels	mAP	GFLOPs	Param
supervised					
SlowFast R101 [23]	K400	1	23.8	138	53
MViTv2-B [41]	K400	1	29.0	225	51
MViTv2-L [41]	IN-21K+K700	1	<mark>34.4</mark>	2828	213
self-supervised					
MaskFeat MViT-L [73]	K400	1	37.5	2828	218
VideoMAE ViT-B [63]	K400	×	26.7	180	87
VideoMAE vit-B [63]	K400	1	31.8	180	87
VideoMAE ViT-L [63]	K400	×	34.3	597	305
VideoMAE ViT-L [63]	K400	1	37.0	597	305
VideoMAE viT-H [63]	K400	×	36.5	1192	633
VideoMAE vit-H [63]	K400	1	39.5	1192	633
ST-MAE Vit-L [22]	K400	1	35.7	598	304
ST-MAE Vit-H [22]	K400	1	36.2	1193	632
MVD-B (Teacher-B)	IN-1K+K400	×	29.3	180	87
MVD-B (Teacher-B)	IN-1K+K400	1	33.6	180	87
MVD-B (Teacher-L)	IN-1K+K400	×	31.1	180	87
MVD-B (Teacher-L)	IN-1K+K400	1	34.2	180	87
MVD-L (Teacher-L)	IN-1K+K400	×	37.7	597	305
MVD-L (Teacher-L)	IN-1K+K400	1	38.7	597	305
MVD-H (Teacher-H)	IN-1K+K400	×	40.1	1192	633
MVD-H (Teacher-H)	IN-1K+K400	1	41.1	1192	633

AVA v2.2

Kinetics-400

Visualization of teachers' features on videos

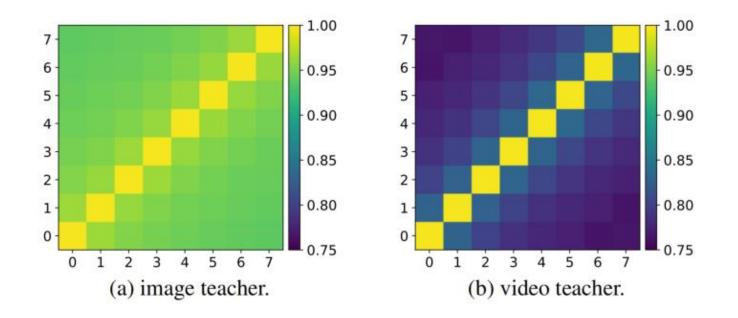


Figure 3. Feature similarity across different frames for different teacher models. Similarity matrices are computed on the Kinetics-400 validation set.

Video teachers capture more temporal difference

Conclusion

- MVD is a two-stage masked video modeling framework.
- Students distilled with different teachers show different properties.
- Combining image and video teachers with co-teaching achieves higher performance.
- MVD outperforms previous MVM methods at different model scales.
- MVD achieves SoTA on various video downstream tasks.

Code & pretrained models are available on GitHub! https://github.com/ruiwang2021/mvd