THU-AM-295

Conflict-Based Cross-View Consistency for Semi-Supervised Semantic Segmentation

Zicheng Wang^{1, 3}, Zhen Zhao¹, Xiaoxia Xing³, Dong Xu², Xiangyu Kong³ and Luping Zhou¹

¹University of Sydney ²University of Hong Kong ³Samsung Research China-Beijing

Brief Introduction

Background:

Current semi-supervised segmentation methods may suffer from the confirmation bias problem

> The confirmation bias problem can be alleviated by the co-training framework

> The two sub-nets of the co-training framework may step into a collapse

Contributions:

- We propose a feature discrepancy loss to prevent the two sub-nets from collapsing into each other
- We propose a conflict-based pseudo-labeling strategy to encourage the sub-nets learn more useful information from conflicting predictions

Problem Statement

Pixel-wise annotation is extremely expensive

Problem Statement

- Semi-supervised semantic segmentation
 - How to fully take advantage of the unlabeled data ?

labeled data

unlabeled data

Background

- Self-training
 - Train a model on the labeled set
 - Generate pseudo labels for the unlabeled set
 - Re-train the model
- Consistency regularization
 - Generate perturbed inputs
 - Encourage the model to generate consistent predictions for different inputs

• Confirmation bias problem

Co-training

- Encourage two sub-nets to reason the input from different views
- > enhancing the reliability of the generated pseudo-labels

• different sub-nets may step into a collapse

Cross-View Consistency (CVC)

We propose a new feature discrepancy loss to prevent the two sub-nets from collapsing into each other, thus learning distinct features from the same input

Performance

- The cosine similarity between features extracted by the two sub-nets of the traditional cross-consistency regularization (CCR) method keeps a high level
- The cosine similarity between features extracted by the two sub-nets of our cross-view consistency (CVC) keeps a low level

Performance

- CCR will generate more confident predictions, but many predictions are incorrect (confirmation bias problem)
- Our CVC method will generate more correct predictions and can reduce the influence of the confirmation bias problem

Conflict-based Pseudo-Labeling (CPL)

- > The feature discrepancy loss might introduce a too strong perturbation
- The training might be unstable
- We enable the sub-nets to learn more useful information from conflicting but confident (cc) predictions
- The sub-nets can generate consistent predictions
- The training would be stable

$$\mathcal{L}_{con,i}^{u} = \omega_c \mathcal{L}_{con,i}^{u,cc} + \mathcal{L}_{con}^{u,e}$$

Performance

Our CPL method can prevent the two sub-nets from making inconsistent predictions

Experiments

Our CCVC method achieves the new SOTA performance

Dataset	Pascal VOC					CityScapes			
Methods	1/16 (92)	1/8 (183)	1/4 (366)	1/2 (732)	Full (1464)	Methods	1/16 (186)	1/8 (372)	1/4 (744)
Supervised Baseline	45.1	55.3	64.8	69.7	73.5	Supervised Baseline	63.3	65.8	68.4
CutMix-Seg	52.2	63.5	69.5	73.7	76.5	CCT	66.4	72.5	75.7
PseudoSeg	57.6	65.5	69.1	72.4	73.2	GCT	65.8	71.3	75.3
PC ² Seg	57.0	66.3	69.8	73.1	74.2	CPS	69.8	74.3	74.6
CPS	64.1	67.4	71.7	75.9	-	ELN	-	70.3	73.5
ReCo	64.8	72.0	73.1	74.7	-	ST++	-	72.7	73.8
ST++	65.2	71.0	74.6	77.3	79.1	U^2PL	69.0	73.0	76.3
U^2PL	68.0	69.2	73.7	76.2	79.5	USRN	71.2	75.0	-
PS-MT	65.8	69.6	76.6	78.4	80.0	PS-MT	-	75.8	76.9
Ours	70.2	74.4	77.4	79.1	80.5	Ours	74.9	76.4	77.3

Qualitative Results

inputs

CCR

CVC

CCVC

gt

Thank you for listening!