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OvarNet : Towards Open-vocabulary Object Attribute Recognition
Ø Our model can simultaneously localize, categorize, and characterize arbitrary objects in an open-vocabulary scenario.
Ø In the paper, we leverage Pretrained VL model and freely available image-caption pairs for training and verify that the

recognition of semantic category and attributes is complementary for visual scene understanding.



Motivation

Ø Labelling an object just by category has largely over-simplified our understanding of the visual world.

Ø When looking around the world, we often understand visual scene by objects via attribute cues.

Ø Visual language corpora are freely available online, can they be used to aid visual understanding?
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Objective

Ø Simultaneously localize, categorize, and characterize arbitrary objects in an open-vocabulary scenario.

Ø Verify that the recognition of semantic category and attributes is complementary for visual scene understanding.
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Method

Ø We start with a naive two-stage approach for open-vocabulary object detection and attribute classification.

Ø We finetune the VL model by a federated training strategy and investigate the efficacy of leveraging freely

available online image-caption pairs.

Ø We train a Faster-RCNN type model end-to-end with knowledge distillation.
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2-Stage Architecture

Ø Problem Setting:

• Class-agnostic Region Proposal: propose the candidate regions that potentially have objects situated.

• Generating Attribute Embedding: obtain attribute/category embeddings via two variants of prompts.

• Attribute Classification: compute the similarity between visual region feature and attribute concept

embedding.

• Training Procedure: to better align the regional visual feature to the attribute description.



2-Stage Architecture

Ø Generating Attribute Embedding :

• employ prior knowledge of ontologies, and encode their parent-class words along with the attribute.

• augment it with multiple learnable prompt vectors.

Ø Training Procedure :
• Step-I: Federated Training. exploit the annotations in existing datasets, i.e., detection and attribute

prediction.

Step-I: Training by base attribute annotations
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2-Stage Architecture

Ø Training Procedure :

• Step-II: Training with Image-caption Dataset. consider using freely available image-caption datasets to 

further improve the alignment, especially for novel attributes.
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Distilled Architecture

Ø Problem Setting:

• Visual Encoder:

obtain multi-scale feature maps.

• Class-agnostic Region Encoding: 

ROI-align with Transformer attentional pooling.

• Federated Training:
       jointly supervise localization and classification.

• Training via Knowledge Distillation: 
      encourage similar prediction between two and one stage model.

Ø Prediction can be realised with the pre-computed proposals, but the inference is time-consuming.
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Evaluation

Ø Dataset
• MS-COCO – 48 classes are selected as base, and 17 classes are used as unseen/novel classes.
• VAW – half of the ‘tail’ attributes and 15% of the ‘medium’ attributes as the novel set.
• LSA – LSA common and LSA common → rare.
• OVAD – open-vocabulary attributes detection with a annotated attribute evaluation benchmark.

Ø Metrics
• both box-given and box-free settings.
• mAP over base set classes, novel set classes, and all classes.
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Ø Our considered open-vocabulary object attribute recognition involves two sub-tasks: open-vocabulary 
object detection and classifying the attributes for all detected objects.



Results

Ø Benchmark on COCO and VAW. OvarNet surpasses the recent state-of-the-art ViLD-ens and Detic by a 
large margin, showing that attributes understanding is beneficial for open-vocabulary object recognition.



Results

Ø Cross-dataset Transfer on OVAD Benchmark and Evaluation on LSA Benchmark 

• Our proposed models largely outperform other competitors by a noticeable margin.



Qualitative Results


