

SfM-TTR: Structure from Motion for Test-Time Refinement of Single-View Depth Networks

Sergio Izquierdo, Javier Civera University of Zaragoza

THU-PM-082

Scene Reconstruction

Multi-view traditional methods

Single-view deep learning

Motivation

JUNE 18-22, 2023

- Multi-view traditional methods
 - ✓ 3D geometry based
 - Accurate estimations
 - x Sparse depth map
 - x Not learned priors
- Single-view networks
 - Learned priors
 - ✓ Dense estimations
 - x Vast collections of images
 - 🗴 No geometry based

Input sequence

	SfM-TTR
l	

Compute SfM reconstruction Compute Network predictions

- 1. Compute SfM reconstruction
- 2. Compute Network predictions
- 3. Align both depth maps

- 1. Compute SfM reconstruction
- 2. Compute Network predictions
- 3. Align both depth maps
- 4. Use sparse depth as pseudo-gt

$$\mathcal{L} = \frac{1}{|\mathcal{D}_{j}^{\text{SfM}}|} \sum_{l} w_{l,j}^{\boldsymbol{\theta}} \| \hat{s} \cdot D_{l,j}^{\text{SfM}} - D_{l,j}^{\text{NN}} \|_{1}$$

- 1. Compute SfM reconstruction
- 2. Compute Network predictions
- 3. Align both depth maps
- 4. Use sparse depth as pseudo-gt

- 1. Compute SfM reconstruction
- 2. Compute Network predictions
- 3. Align both depth maps
- 4. Use sparse depth as pseudo-gt

$$\mathcal{L} = \frac{1}{|\mathcal{D}_{j}^{\text{SfM}}|} \sum_{l} w_{l,j}^{\boldsymbol{\theta}} \| \hat{s} \cdot D_{l,j}^{\text{SfM}} - D_{l,j}^{\text{NN}} \|_{1}$$

- 1. Compute SfM reconstruction
- 2. Compute Network predictions
- 3. Align both depth maps
- 4. Use sparse depth as pseudo-gt

$$\mathcal{L} = \frac{1}{|\mathcal{D}_{j}^{\text{SfM}}|} \sum_{l} w_{l,j}^{\boldsymbol{\theta}} \| \hat{s} \cdot D_{l,j}^{\text{SfM}} - D_{l,j}^{\text{NN}} \|_{1}$$

Optimize the encoder
 Get refined predictions

• Heteroscedasticity

Uneven distribution of points

- Heteroscedasticity
- Uneven distribution of points

Many outliers (both distributions)

Two Steps: Strict & Relaxed Model

Two Steps: Strict & Relaxed Model

- 1. Strict model
 - RANSAC to remove outliers

$$\frac{\left(s_{l,j} \cdot D^{\text{SfM}}_{l',j'} - D^{\text{NN}}_{l',j'}\right)^2}{s_{l,j} \cdot D^{\text{SfM}}_{l',j'}} \leq \tau$$

• Weighted Least Squares

$$\hat{s} = \operatorname*{argmin}_{s} \sum_{j} \sum_{l} w_{l,j}^{s} \left(s \cdot D_{l,j}^{\mathrm{SfM}\checkmark} - D_{l,j}^{\mathrm{NN}\checkmark} \right)^{2}$$

Two Steps: Strict & Relaxed Model

- 1. Strict model
 - RANSAC to remove outliers

$$\frac{\left(s_{l,j} \cdot D^{\text{SfM}}_{l',j'} - D^{\text{NN}}_{l',j'}\right)^2}{s_{l,j} \cdot D^{\text{SfM}}_{l',j'}} \leq \tau$$

• Weighted Least Squares

$$\hat{s} = \underset{s}{\operatorname{argmin}} \sum_{j} \sum_{l} w_{l,j}^{s} \left(s \cdot D_{l,j}^{\text{SfM}\checkmark} - D_{l,j}^{\text{NN}\checkmark} \right)^{2}$$

- 2. Relaxed model
 - Use \hat{s} to include outliers and correct them

• SfM-TTR improves depth estimations

• SfM-TTR improves depth estimations

- SfM-TTR improves depth estimations
- Bigger improvement than
 photometric refinement
- Specially for further areas

- Improvement in different network architectures
- Improvement in self and supervised models

TTR	Method	Abs Rel ↓	Sq Rel↓	RMSE ↓	RMSE log ↓	$\delta < 1.25 \ \uparrow$	$\delta < 1.25^2 \uparrow$	$\delta < 1.25^3 \uparrow$
X	AdaBins [6] ◊ †	0.058	0.190	2.360	0.088	0.964	0.995	0.999
1	AdaBins [6] + SfM-TTR †	0.054	0.138	1.885	0.078	0.978	0.996	0.999
×	ManyDepth [48] *	0.059	0.297	2.960	0.097	0.954	0.991	0.998
1	ManyDepth [48] + Ph-TTR *	0.053	0.252	2.774	0.089	0.962	0.993	0.998
1	ManyDepth [48] + SfM-TTR	0.054	0.252	2.510	0.089	0.966	0.992	0.998
×	CADepth [51] *	0.073	0.359	3.287	0.112	0.941	0.990	0.997
1	CADepth [51] + Ph-TTR *	0.082	0.426	3.565	0.124	0.923	0.986	0.997
1	CADepth [51] + SfM-TTR	0.060	0.263	2.620	0.096	0.962	0.992	0.997
X	DIFFNet [58] *	0.066	0.318	3.078	0.103	0.953	0.992	0.998
1	DIFFNet [58] + Ph-TTR *	0.053	0.252	2.778	0.090	0.965	0.993	0.998
1	DIFFNet [58] + SfM-TTR	0.052	0.229	2.444	0.085	0.973	0.994	0.998

KITTI

Conclusions

- SfM serves as good pseudo ground truth
- Significant improvement of the estimations
 - Specially in distant points
- Better results than other refinements

