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One-Shot Mixed Precision Search

Contribution 1: Using Variational Inference, we theoretically derive the earlier 
empirically-found state-of-the-art searching methods (EdMIPS, DNAS).

• Propose a generic 
approach to model 
hardware constraints 
by a Boltzmann 
distribution 
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Bit width probability model 𝑓!(𝜂)

𝜋! 𝜂 = Softmax(𝑓! 𝜂 )

ℒ = ℒ"#" + 𝜂ℒ$% 𝑧 ∼ GumbelSoftmax(𝑓! 𝜂 )

Contribution 2: We propose to augment a supernet with a bit width 
prediction model that allows searching for Pareto-front models in O(1) time.

After supernet training, we can select all Pareto models by sweeping over the 
hardware penalty.
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Pareto searching time

• For large models (ResNet-18 and MobileNet-v2),
the proposed method is 5 times more efficient than existing methods.
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Correlation between the child and standalone 
model performances

• High correlation scores (> 0.93)

• Co-adaptation of weights is avoided
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Selected model quality

• Model quality is similar to other methods

• A richer set of bit width combinations is found
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Quantization

Quantization is the process of converting floating-point tensors to lower 
precision integer tensors.

This results in a
• Reduced inference latency
• Reduced power consumption
• Potentially lower accuracy

Options:
• Quantize weights & activations
• Mixed precision quantization: {Int8, Int4, Int2}
• Uniform grid
• Quantization Aware Training (QAT)
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Bit Width Searching

• Some modern hardware already supports mixed-precision operations

• Middle layers can be quantized to lower bit widths

• But search space in too large, e.g., 𝑂(𝑀&'), where 𝑀 – is the number 
of bit width options, and 𝑁 – is the number of layers.

[UNET image taken from
Ronneberger O, Fischer P, Brox T (2015). "U-
Net: Convolutional Networks for Biomedical 
Image Segmentation". arXiv:1505.04597]
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Bit Width Searching

• Some modern hardware already supports mixed-precision operations

• Middle layers can be quantized to lower bit widths

• But search space in too large, e.g., 𝑂(𝑀&'), where 𝑀 – is the number 
of bit width options, and 𝑁 – is the number of layers.
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[UNET image taken from
Ronneberger O, Fischer P, Brox T (2015). "U-
Net: Convolutional Networks for Biomedical 
Image Segmentation". arXiv:1505.04597]
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Pareto front

• For practical reasons, it is convenient to find multiple Pareto models
• One-stage algorithms require multiple restarts:

• EdMIPS [1]
• DNAS [2]
• Bayesian Bits [3]
• HAQ [4]
• etc
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Finding Pareto front

• Two-stage algorithms: first train a Supernet (done once), then search for 
suitable bit widths:

• SPOS [5] uses Evolutionary algorithm (very slow)
• Bit-Mixer [6] and FN3[7] use heuristics

(largest eigenvalue of a Hessian or pruning)
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Finding Pareto front

• Two-stage algorithms: first train a Supernet (done once), then search for 
suitable bit widths:

• SPOS [5] uses Evolutionary algorithm (very slow)
• Bit-Mixer [6] and FN3[7] use heuristics

(largest eigenvalue of a Hessian or pruning)

Can we do better? Yes!
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Variational Inference approach (VIMPS)

𝑤 – FP weights
𝑥 – FP activation
𝑧 – Stochastic gate
𝑄 – Quantizer
𝑦 – Output
𝒟 – Dataset

The task is to find the posterior probability 𝑝( 𝑧|𝒟
We cannot calculate it using Bayes Rule, but we can approximate 
it using some variational distribution 𝑞) 𝑧 by minimizing:

KL 𝑞) 𝑧 ||𝑝( 𝑧|𝒟 = −ℱ 𝑤, 𝜋 + log 𝑝( 𝒟

ELBO const 
w.r.t. 𝑞
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Variational Inference approach (VIMPS)

ℱ 𝑤, 𝜋 = 𝔼*∼,!(*) log 𝑝( (𝒟|𝑧) +I
/01

2

I
3∈ℬ

𝜋/,3 log 𝑝/,3 + 𝐻(𝜋)

Task loss
Hardware penalty 
term per layer

𝐾 – Number of layers
ℬ – a set of all bit width 
configuration in a layer
𝜂 – hardware penalty
ℎ/,3 – is the amount of 
resources (BOPs) 
required when layer 𝑘 is 
quantized in bit width 𝑏

Entropy

𝑝/,3 =
𝑒789",$

∑3∈ℬ 𝑒789",$
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Variational Inference approach (VIMPS)
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Generalization to EdMIPS and DNAS

1. Approximate the variational 𝑞! 𝑧 using a differentiable Concrete distribution (DNAS):

𝔼"∼$!(") log 𝑝' (𝒟|𝑧) = 𝔼(∼)*+,-.(/,1) log 𝑝' (𝒟|𝑧()

2. Use a Softmax function as a proxy for the gate probabilities (EdMIPS):

𝔼"∼$!(") log 𝑝' (𝒟|𝑧) = log 𝑝' 𝒟 Softmax 𝑙

Other differences:

1. Both DNAS and EdMIPS do not use entropy.

2. DNAS uses a multiplicative hardware loss.

3. EdMIPS uses a crude approximation of the expected conditional distribution. 

ℱ 𝑤, 𝜋 = 𝔼*∼,!(*) log 𝑝( (𝒟|𝑧) + 𝜂I
/01

2

𝔼)% 𝑏( 𝔼)& 𝑏: MACs(𝑘) + 𝐻(𝜋)
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Bit width probability model 𝑓!(𝜂)
How to find Pareto architectures at once?

𝜂 – hardware penalty
𝜋! 𝜂 – bit width probability model
𝑧 – stochastic gate
𝒟 – dataset
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Bit width probability model 𝑓!(𝜂)

𝜋! 𝜂 = Softmax(𝑓! 𝜂 )

ℒ = ℒ"#" + 𝜂ℒ$% 𝑧 ∼ GumbelSoftmax(𝑓! 𝜂 )

How to find Pareto architectures at once?

𝜂 – hardware penalty
𝜋! 𝜂 – bit width probability model
𝑧 – stochastic gate
𝒟 – dataset
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One-shot Mixed Precision Search

ℒ 𝒟;𝑤, 𝜃 = −𝔼8∼;(8) 𝔼*∼,!(()(*) log 𝑝( (𝒟|𝑧) +I
/01

2

I
3∈ℬ

𝜋/,3(𝜂) log 𝑝/,3 (𝜂) + 𝜆𝐻(𝜋(𝜂))

+𝜇 I
<∈ℬ%

I
=∈ℬ%
=><

𝑤< − 𝑤= &

Kernel similarity 
loss

𝜂 – hardware penalty
𝜋! 𝜂 – bit width probability model
𝑧 – stochastic gate
𝒟 – dataset
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Intuition behind the bit width probability model
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Correlation between the child and standalone 
model performances

• High correlation scores (> 0.93)

• Co-adaptation of weights is avoided

Model              Method                       Kendall’s Tau correlation score
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1. We theoretically derived two new searching methods:
VIMPS and One-Shot MPS.

2. We showed that the bit width probability model allows for a straight-
forward Pareto-front architecture selection.

3. The bit width probability model imposes structure on the selected 
architectures due to which we can 

1. find a richer set of bit width combinations, and
2. improve a Kendall’s tau correlation which is useful for predicting the 

fine-tuned model performance.

For questions, feel free to email me: i.koryakovskiy@gmail.com

Conclusion

mailto:i.koryakovskiy@gmail.com
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