Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields Brian K. S. Isaac-Medina*, Chris G. Willcocks*, Toby P. Breckon*t

Department of {*Computer Science, *Engineering} Durham University, Durham, UK

Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields

Brian K. S. Isaac-Medina, Chris G. Willcocks, Toby P. Breckon

Integrated Positional Encoding ($\gamma_{I}(\mathbf{d}, \mathbf{o}, \rho, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) d}{\iiint_{F} dV}$

Mip-NeRF Approximation

$$\gamma_{I}^{*}(\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathbb{E}_{\mathbf{X} \sim \mathcal{N}(\mathbf{P}\boldsymbol{\mu},\mathbf{P}\boldsymbol{\Sigma}\mathbf{P}^{\mathsf{T}})}[\gamma(\mathbf{X})]$$

Exact-NeRF is competitive with mip-NeRF, with better background depth estimation.

IPE)		Blender Dataset							
dV		Model	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	A		
		Mip-NeRF	34.766	0.9706	0.0675	0.0822	0.0		
		Exact-NeRF	34.707	0.9705	0.0667	0.0878	0.0		
				Mip-NeRF 3	860 Dataset				
·)]		Model	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	A		
·/]		Mip-NeRF 360	27.325	0.7942	0.6559	0.2438	0.1		
		Exact-NeRF	27.230	0.7881	0.6569	0.2452	0.1		
		Bicy	cle	Bor	nsai		Garden		
ling	Ground Truth								
$dV = d\mathbf{S}$	Mip-NeRF 360								
$\mathbf{N}_{ au} \cdot \mathbf{e}_k$ $\mathbf{N}_{ au}$	Exact-NeRF								

NeRF: Rays and point sampling

Positional Encoding

 $\gamma(\mathbf{x}) = [\sin(2^0 \mathbf{x}), \cos(2^0 \mathbf{x}), \dots, \sin(2^{L-1} \mathbf{x}), \cos(2^{L-1} \mathbf{x})]$

Mip-NeRF: Cones and volumetric sampling

Integrated Positional Encoding $\gamma_{I}(\mathbf{d}, \mathbf{o}, \dot{\rho}, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) dV}{\iiint_{F} dV}$

Approximated IPE

 $\gamma_{I}^{*}(\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathbb{E}_{\mathbf{X} \sim \mathcal{N}(\mathbf{P}\boldsymbol{\mu},\mathbf{P}\boldsymbol{\Sigma}\mathbf{P}^{\mathsf{T}})}[\gamma(\mathbf{X})]$

NeRF: Rays and point sampling

Positional Encoding $\gamma(\mathbf{x}) = [\sin(2^0 \mathbf{x}), \cos(2^0 \mathbf{x}), \dots, \sin(2^{L-1} \mathbf{x}), \cos(2^{L-1} \mathbf{x})]$

 $\gamma_I^*(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{P}\boldsymbol{\mu}, \mathbf{P}\boldsymbol{\Sigma}\mathbf{P}^{\top})}[\gamma(\mathbf{x})]$

Mip-NeRF: Cones and volumetric sampling

Mip-NeRF sampling strategy prevents aliasing and blurring

However, the Gaussian approximation degrades for large cone frustums

Integrated Positional Encoding $\gamma_{I}(\mathbf{d}, \mathbf{o}, \dot{\rho}, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) dV}{\prod_{F} \gamma(\mathbf{x}) dV}$ $\iiint_F dV$

Approximated IPE

NeRF: Rays and point sampling

Positional Encoding $\gamma(\mathbf{x}) = [\sin(2^0 \mathbf{x}), \cos(2^0 \mathbf{x}), \dots, \sin(2^{L-1} \mathbf{x}), \cos(2^{L-1} \mathbf{x})]$

 $\gamma_{I}^{*}(\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathbb{E}_{\mathbf{X} \sim \mathcal{N}(\mathbf{P}\boldsymbol{\mu},\mathbf{P}\boldsymbol{\Sigma}\mathbf{P}^{\mathsf{T}})}[\gamma(\mathbf{X})]$

Mip-NeRF: Cones and volumetric sampling

Integrated Positional Encoding $\gamma_{I}(\mathbf{d}, \mathbf{o}, \dot{\rho}, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) dV}{\iiint_{F} dV}$

Approximated IPE

Exact-NeRF: Pyramids and (exact) volumetric sampling

Integrated Positional Encoding $\gamma_{I}(\mathbf{d}, \mathbf{o}, \dot{\rho}, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) dV}{\iiint_{F} dV}$

Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields.

B.K.S. Isaac-Medina, C.G. Willcocks and T.P. Breckon

Exact-NeRF

Exact Integrated Positional Encoding

$$\gamma_{I}(\mathbf{d}, \mathbf{o}, \rho, t_{i}, t_{i+1}) = \frac{\iiint_{F} \gamma(\mathbf{x}) dV}{\iiint_{F} dV}$$

Divergence Theorem

$$\iiint \nabla \cdot \mathbf{F} dV = \oiint_{\partial S} \mathbf{F} \cdot d\mathbf{S}$$

Denominator (Volume)

$$\mathbf{F} = \frac{1}{3} [x, y, z]^{\top} \qquad \mathbf{F} = \left[-\frac{1}{2^{l}} \cos(\theta) \right]$$
$$\iiint_{F} dV = \frac{1}{3} \bigoplus_{\partial S} [x, y, z]^{\top} \cdot d\mathbf{S} \qquad \iiint_{F} \sin(2^{l}x) dV = \bigoplus_{\partial S} \left[-\frac{1}{2^{l}} \cos(\theta) \right]$$

$$\iiint_F dV = \frac{1}{6} \sum_{\tau \in \mathcal{T}} \mathbf{P}_{\tau,0} \cdot \mathbf{N}_{\tau}$$

$$\iiint_F \sin(2^l \mathbf{x}_k) dV = \frac{1}{2^{3l}} \frac{1}{\tau}$$

$$\sigma_{k,\tau} = \frac{det([\mathbf{1}, \mathbf{X}_{\tau}^{\top} \mathbf{e}])}{det([\mathbf{1}, \mathbf{X}_{\tau}^{\top} \mathbf{e}])}$$

Numerator

Exact-NeRF vs Mip-NeRF

Model	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	Avg ↓
Mip-NeRF	34.766	0.9706	0.0675	0.0822	0.0242
Exact-NeRF	34.707	0.9705	0.0667	0.0878	0.0242

Ground Truth

Mip-NeRF

Exact-NeRF

Exact-NeRF vs Mip-NeRF 360

Model	PSNR ↑	SSIM ↑	LPIPS ↓	DISTS ↓	Avg ↓
Mip-NeRF 360	27.325	0.7942	0.6559	0.2438	0.1077
Exact-NeRF	27.230	0.7881	0.6569	0.2452	0.1088

Exact-NeRF vs Mip-NeRF 360

Bonsai

Garden

Exact-NeRF: Numerical Underflow

Our solution is prone to numerical underflow. This can be mitigated using l'Hopital's rule.

Conclusions

- Exact-NeRF is an alternative exact parameterization of the volumetric positional encoding that uses pyramids instead of cones
- Our approach has a similar performance compared to mip-NeRF and it can be implemented right off the shelf in mip-NeRF 360. Exact-NeRF shows a better reconstruction of background objects.
- The key idea of Exact-NeRF can be exploited in different applications.
 It also enables future exploration of new positional encodings.

Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields Brian K. S. Isaac-Medina*, Chris G. Willcocks*, Toby P. Breckon*t

Department of {*Computer Science, *Engineering} Durham University, Durham, UK

