

Global and Local Mixture Consistency Cumulative Learning for Long-tailed Visual Recognitions

Fei Du^{1,2,3},Peng Yang^{2,3},Qi Jia^{1,3},Fengtao Nan^{1,2,3},Xiaoting Chen^{1,3},Yun Yang^{1,3*}

¹National Pilot School of Software, Yunnan University, Kunming, China

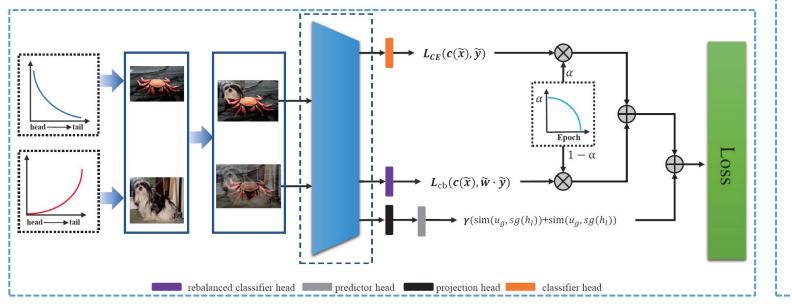
²School of Information Science and Engineering, Yunnan University, Kunming, China

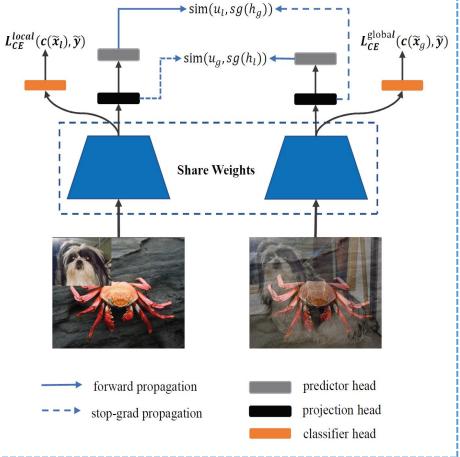
³Yunnan Key Laboratory of Software Engineering

Paper tag : WED-PM-330

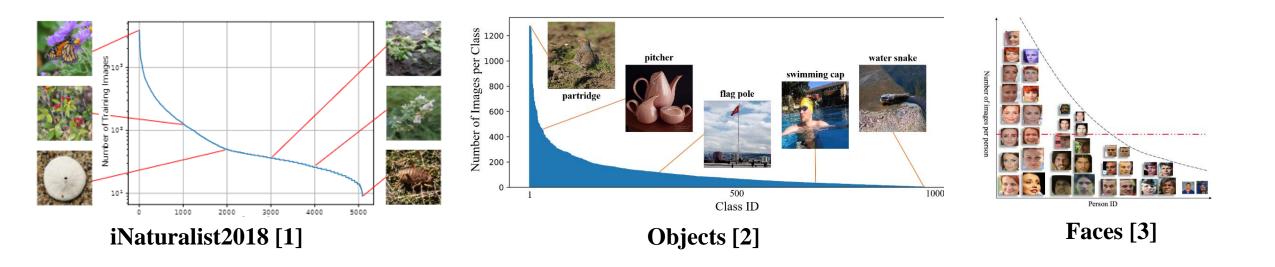
Code Link: https://github.com/ynu-yangpeng/GLMC

- A Global and Local Mixture Consistency Loss improves the robustness of the feature extractor.
- A Cumulative Head-tail Soft Label Reweighted Loss mitigates the head class bias problem.





Real World Category Task Data Collection



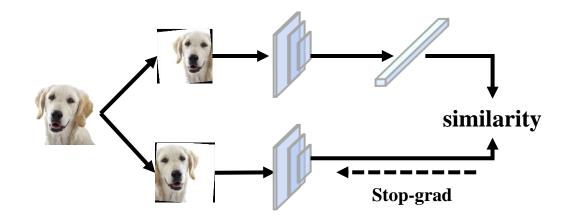
[1] Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; and Belongie, S. 2018. The inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, 8769–8778.

[2] Liu, Z.; Miao, Z.; Zhan, X.; Wang, J.; Gong, B.; and Yu,S. X. 2019. Large-scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2537–2546.

[3] Zhang, X.; Fang, Z.; Wen, Y.; Li, Z.; and Qiao, Y. 2017. Range loss for deep face recognition with long-tailed training data. In Proceedings of the IEEE International Conference on Computer Vision, 5409–5418.

Related Work

Contrastive Representation Learning for long-tail recognition



Target:

• To obtain a balanced representation space

Drawback:

- A multi-stage pipeline
- Large batches of negative examples for training
- Extensive training skills and memory overhead

Class Rebalance learning

Target:

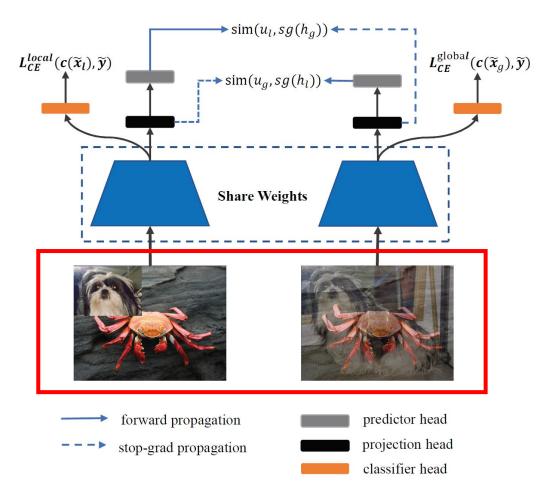
• To strengthen the tail class by oversampling or increasing weight.

Drawback:

- over-learning the tail class may increase the risk of overfitting
- **under-sampling** or reducing weight in the head class inevitably **sacrifice the performance of head classes**.

Global and Local Mixture Consistency Learning

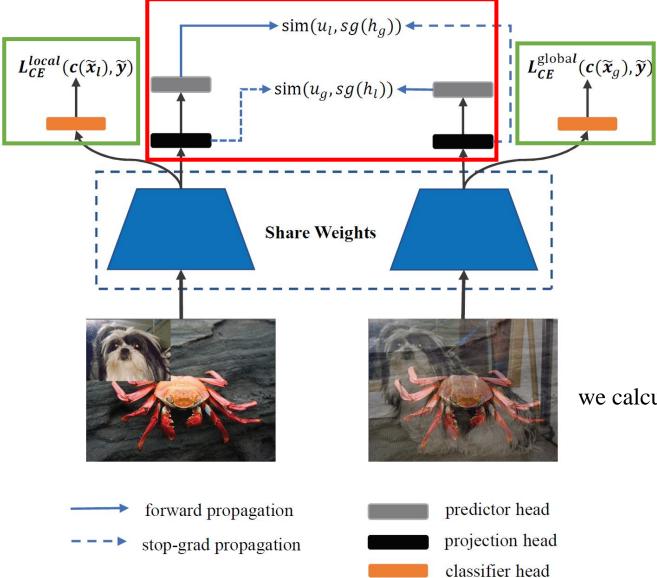
• A stochastic mixed-label data augmentation module Aug(x, y). For each input batch samples, Aug(x, y) transforms x and their labels y in global and local augmentations pairs, respectively.



Global Mixtu	re:
$\lambda \sim Beta(\beta,\beta)$	
$\widetilde{x}_g = \lambda x_i + (1 - 1)$	$(\lambda)x_j$
$\tilde{p}_g = \lambda p_i + (1 - 1)$	$(-\lambda)p_j$

Local Mixture:
$\tilde{x}_l = M \odot x_i + (1 - M) \odot x_j$
$r_x \sim Uniform(0, W), r_w = W\sqrt{1-\lambda}$
$r_y \sim Uniform(0, H), r_h = H\sqrt{1-\lambda}$

Global and Local Mixture Consistency Learning



$$sim(u_g, h_l) = -\frac{u_g}{\|u_g\|} \cdot \frac{h_l}{\|h_l\|}$$
$$sim(u_l, h_g) = -\frac{u_l}{\|u_l\|} \cdot \frac{h_g}{\|h_g\|}$$
$$\mathcal{L}_{sim} = sim(u_g, sg(h_l)) + sim(u_l, sg(h_g))$$

we calculate the mixed-label cross-entropy loss:

$$\mathcal{L}_{c} = -\frac{1}{2N} \sum_{i=1}^{N} \left(\tilde{p}_{g}^{i} \left(logf(\tilde{x}_{g}^{i}) \right) + \tilde{p}_{l}^{i} \left(logf(\tilde{x}_{l}^{i}) \right) \right)$$

Experiments

◆ Full ImageNet and CIFAR Recognition

Top-1 accuracy (%) on full CIFAR-10 and CIFAR-100 dataset with ResNet-50 backbone.

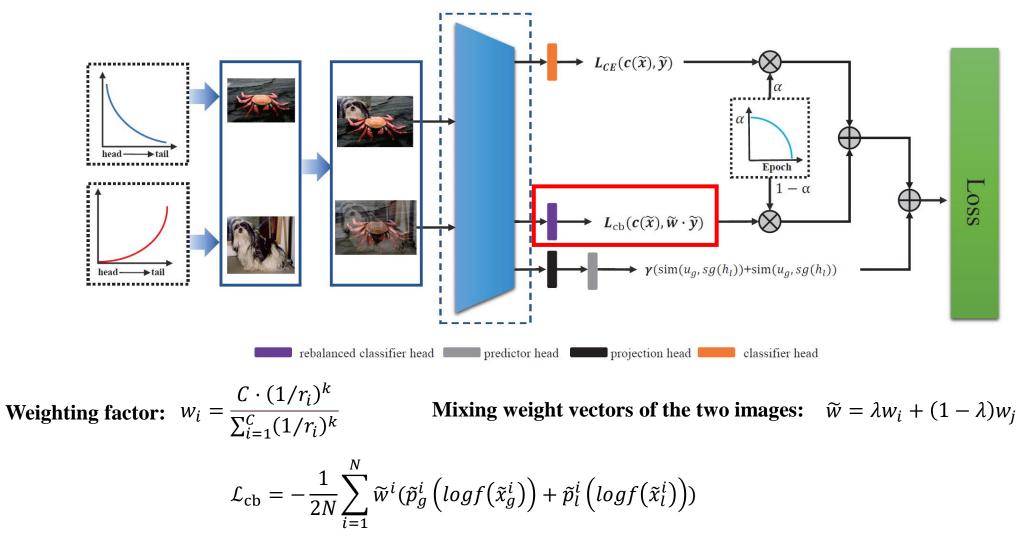
Method	CIFAR-10	CIFAR-100
vanilla	94.85	75.28
MixUp [41]	95.95	77.99
CutMix [40]	95.41	78.03
SupCon [21]	96	76.5
PaCo [8]	-	79.1
ours	97.23	83.05

Top-1 accuracy (%) on full ImageNet dataset with ResNet-50 backbone.

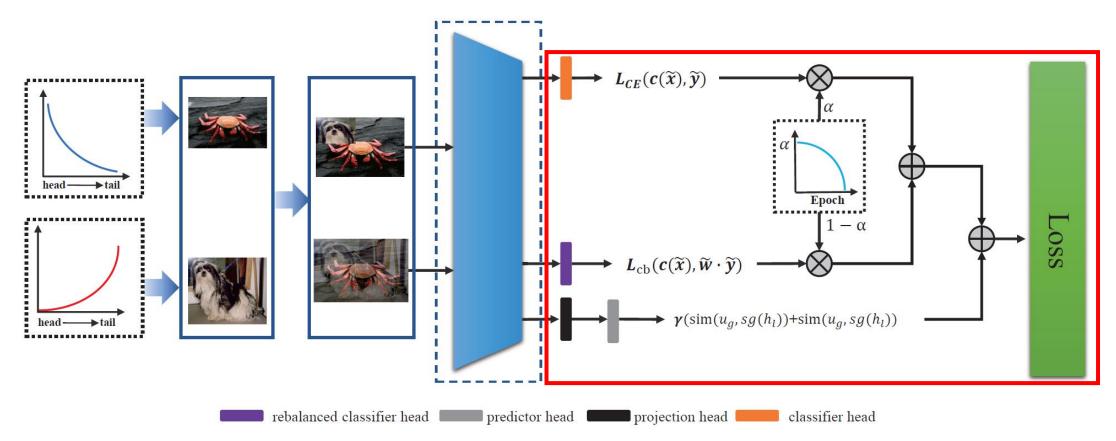
Method	Augmentation	Top-1 acc
vanilla	Simple Augment	76.4
vanilla	MixUp [41]	77.9
vanilla	CutMix [40]	78.6
Supcon [21]	RandAugment	78.4
PaCo [8]	Simple Augment	78.7
PaCo [8]	RandAugment	79.3
ours	MixUp + CutMix	80.2

Cumulative Class-Balanced Learning

• A linear rebalanced classifier head cb(x) that maps vectors r to rebalanced category space. The rebalanced classifier calculates mixed cross entropy loss with the reweighted data distribution.



Cumulative Class-Balanced Learning



$$\mathcal{L}_{total} = \alpha \mathcal{L}_{c} + (1 - \alpha) \mathcal{L}_{cb} + \gamma \mathcal{L}_{sim} \qquad \qquad \alpha = 1 - \left(\frac{T}{T_{max}}\right)^{2}$$

Top-1 accuracy (%) of ResNet-32 on CIFAR-10-LT and CIFAR-100-LT with different imbalance factors [100, 50, 10]. GLMC consistently outperformed the previous best method only in the one-stage.

	Method	CIFAR-10-LT			CIFAR-100-LT		
	Wethod	IF=100	50	10	100	50	10
	CE	70.4	74.8	86.4	38.3	43.9	55.7
	BBN [45]	79.82	82.18	88.32	42.56	47.02	59.12
rebalance classifier	CB-Focal [9]	74.6	79.3	87.1	39.6	45.2	58
rebarance classifier	LogitAjust [29]	80.92	-	-	42.01	47.03	57.74
	weight balancing [1]	-	-	-	53.35	57.71	68.67
	Mixup [42]	73.06	77.82	87.1	39.54	54.99	58.02
augmentation	RISDA [6]	79.89	79.89	79.89	50.16	53.84	62.38
	CMO [32]	-	-	-	47.2	51.7	58.4
	KCL [18]	77.6	81.7	88	42.8	46.3	57.6
	TSC [25]	79.7	82.9	88.7	42.8	46.3	57.6
self-supervised pretraining	BCL [47]	84.32	87.24	91.12	51.93	56.59	64.87
	PaCo [8]	-	-	-	52	56	64.2
	SSD [26]	-	-	-	46	50.5	62.3
ensemble classifier	RIDE (3 experts) + CMO [32]	-	-	-	50	53	60.2
ensemble classifier	RIDE (3 experts) [37]	-	-	-	48.6	51.4	59.8
one-stage training	ours	87.75	90.18	94.04	55.88	61.08	70.74
finetune classifier	ours + MaxNorm [1]	87.57	90.22	94.03	57.11	62.32	72.33

Top-1 accuracy (%) on ImageNet-LT dataset. Comparison to the state-of-the-art methods with different backbone. † denotes results reproduced by BCL with 180 epochs.

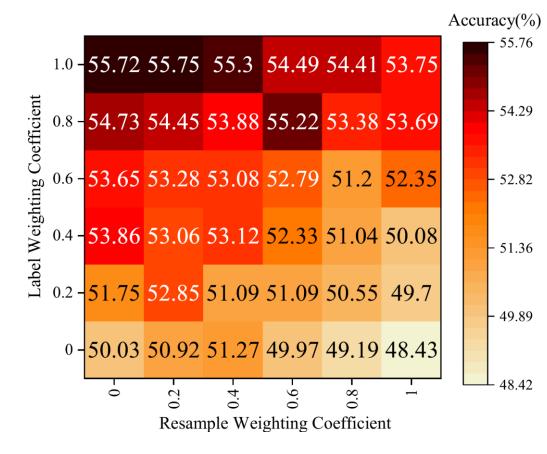
Method	Backbone	ImageNet-LT				
Method	Dackbolle	Many	Med	Few	All	
CE	ResNet-50	64	33.8	5.8	41.6	
CB-Focal [9]	ResNet-50	39.6	32.7	16.8	33.2	
LDAM [3]	ResNet-50	60.4	46.9	30.7	49.8	
KCL [18]	ResNet-50	61.8	49.4	30.9	51.5	
TSC [25]	ResNet-50	63.5	49.7	30.4	52.4	
RISDA [6]	ResNet-50	-	-	-	49.3	
BCL (90 epochs) [46]	ResNeXt-50	67.2	53.9	36.5	56.7	
BCL (180 epochs) [46]	ResNeXt-50	67.9	54.2	36.6	57.1	
PaCo [†] (180 epochs) [8]	ResNeXt-50	64.4	55.7	33.7	56.0	
Balanced Softmax [†] (180 epochs) [34]	ResNeXt-50	65.8	53.2	34.1	55.4	
SSD [26]	ResNeXt-50	66.8	53.1	35.4	56	
RIDE (3 experts) + CMO [32]	ResNet-50	66.4	53.9	35.6	56.2	
RIDE (3 experts) [37]	Swin-S	66.9	52.8	37.4	56	
weight balancing + MaxNorm [1]	ResNeXt-50	62.5	50.4	41.5	53.9	
ours		70.1	52.4	30.4	56.3	
ours + MaxNorm [1]	ResNeXt-50	60.8	55.9	45.5	56.7	
ours + BS [34]		64.76	55.67	42.19	57.21	

Ablations of the different key components of GLMC architecture. We report the accuracies (%) on CIFAR100-LT (IF=100) with ResNet-32 backbone. Note that all model use one stage training.

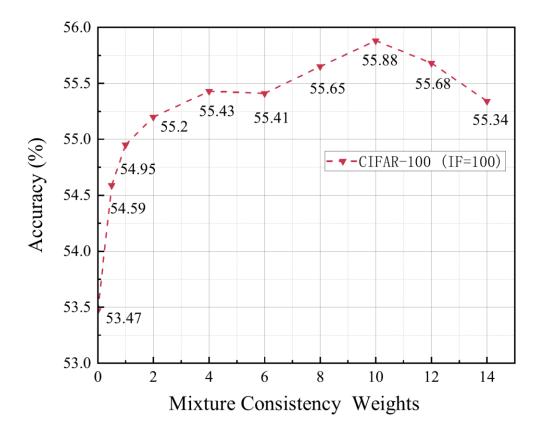
Global and Local Mixture Consistency	Cumulative Class-Balanced	Accuracies(%)
X	×	38.3
×	\checkmark	44.63
\checkmark	×	50.11
\checkmark	\checkmark	55.88

Ablation studies

Confusion matrices of different label reweighting and resample coefficient k on CIFAR-100-LT with an imbalance ratio of 100.



Different global and local mixture consistency weights on CIFAR-100-LT (IF = 100).



https://github.com/ynu-yangpeng/GLMC

