

Learning Transferable Spatiotemporal Representations from Natural Script Knowledge

Ziyun Zeng^{1,2*} Yuying Ge^{3*} Xihui Liu³

Bin Chen⁴[™] Ping Luo³ Shu-Tao Xia¹ Yixiao Ge²[™]

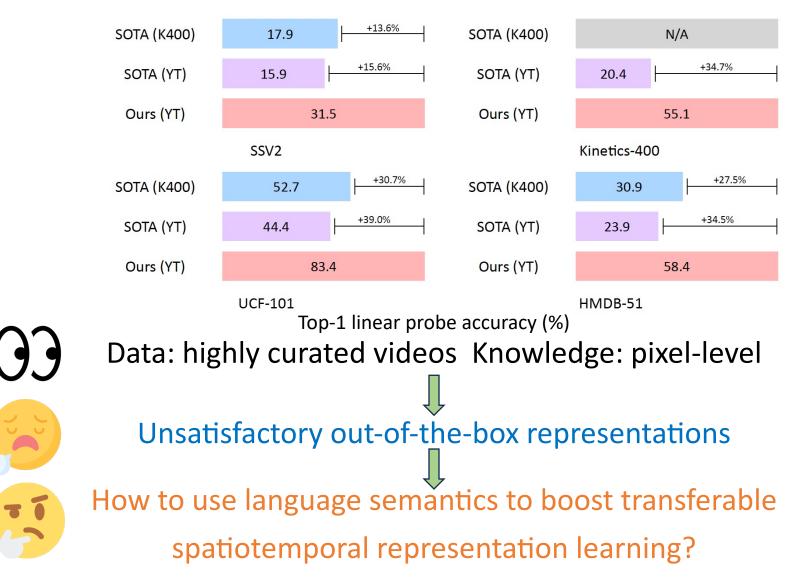
¹Tsinghua University ²Applied Research Center (ARC), Tencent, PCG ³The University of Hong Kong ⁴Harbin Institute of Technology, Shenzhen

* equal contribution [™] corresponding authors

https://github.com/TencentARC/TVTS

THU-PM-236

Existing Works



Turning to Video for Transcript Sorting

Implementation

Sorting shuffled ASR transcripts by attending

to learned video representations.

Motivation

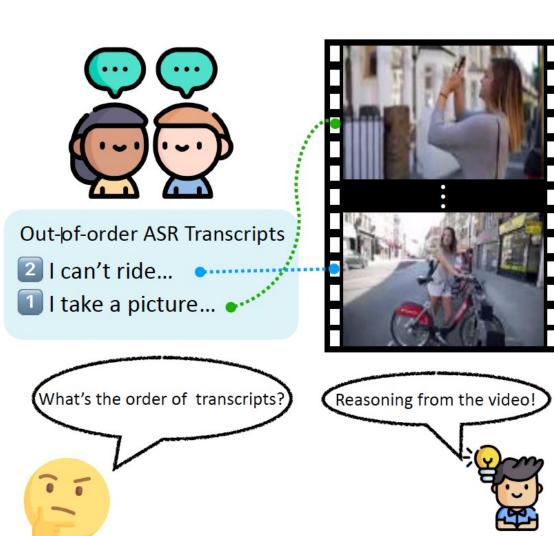
Enforcing the model to contextualize what is

happening over time so that it can re-organize

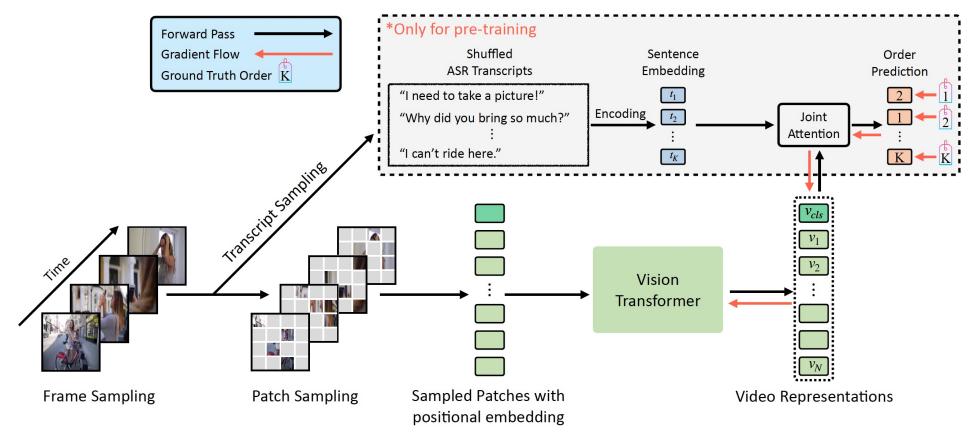
the narrative transcripts.

Merits

- $\checkmark\,$ Learn purely from video.
- Can seamlessly apply to large-scale
 uncurated video data in the real world.



Framework Overview



- Step1: Transcript and frame sampling
- Step2: Text and video feature extraction
- Step3: Turning to Video for Transcript Sorting

Transcript and Frame Sampling

Sampled Frames

 T_1 : Wait a second, I can't ride in these sandals, oh that sucks.

 T_2 : God, this house looks so cute. Okay, I have to take a picture out.

 T_3 : I take like 200 pictures. Like how am I out of storage already? I don't even, I don't get it.

 T_4 : Okay, yeah that's not gonna fit. Why did I bring so much? I'm only here for five days.

Sampled Transcripts

Transcript Side: Consecutively sample K transcripts, each with a duration of l (in seconds), and an interval of 1s between adjacent transcripts.

Frame Side: Sample *M* frames between the beginning and ending time of all *K* transcripts.

Text and Video Feature Extraction

JNE 18-22, 2023

<u>Text Side</u>

- Encoder: DistilBERT-base.
- Pick the [CLS] tokens as the K unordered transcripts' representations $\{t_{o_i}\}_{i=1}^{K}$.

<u>Video Side</u>

- Encoder: ViT-base.
- Divide frames into patches, and randomly mask a large portion of them as the input.
- The video representations are denoted as $\{v_j\}_{j=0}^N$, where N denotes the number of unmasked video patches, and v_0 is the [CLS] token.
- We do not add the extra [MASK] token, and we have no explicit reconstruction target.

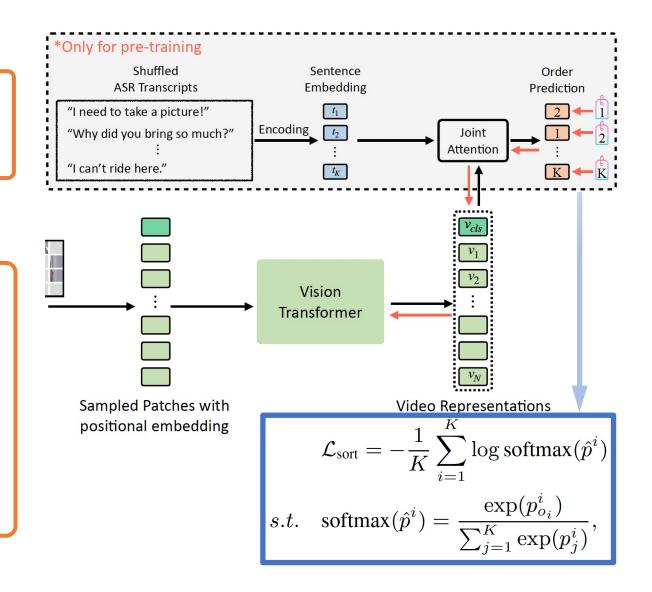
Turning to Video for Transcript Sorting CVPR VANCOUVER, CANADA

Our Expectation

Sorting the transcripts in the correct order by attending to the text and unmasked video tokens.

Implementation Details

Step1: Concatenate $\{t_{o_i}\}_{i=1}^{K}$ and $\{v_j\}_{j=0}^{N}$, and perform self-attention across all tokens. **Step2:** The prediction of the transcript orders is modeled as a *K*-way classification task for each transcript, i.e., \mathcal{L}_{sort} .



Training Objectives

• TVTS + Video-Text Contrastive (\mathcal{L}_{base})

$$\mathcal{L}_{\text{sort}} = -\frac{1}{K} \sum_{i=1}^{K} \log \operatorname{softmax}(\hat{p}^{i}) \qquad \clubsuit \qquad \mathcal{L}_{\text{base}} = \operatorname{NCE}(\hat{t}, \hat{v}) + \operatorname{NCE}(\hat{v}, \hat{t})$$

s.t. $\operatorname{softmax}(\hat{p}^{i}) = \frac{\exp(p_{o_{i}}^{i})}{\sum_{j=1}^{K} \exp(p_{j}^{i})}, \qquad s.t. \quad \operatorname{NCE}(q, k) = -\log \frac{\exp(q^{\top}k_{+}/\tau)}{\sum_{i=1}^{B} \exp(q^{\top}k_{i}/\tau)},$

- where $\hat{t} = \frac{1}{K} \sum_{i=1}^{K} t_i$, and \hat{v} is the [CLS] token of the video, i.e., $\hat{v} \leftarrow v_0$
- Overall objective: $\mathcal{L} = \mathcal{L}_{base} + \lambda \mathcal{L}_{sort}$ ($\lambda = 2$ in our practice)
- To prevent the model from learning shortcuts, we stop the gradients of \mathcal{L}_{sort} from flowing toward encoding transcript features.

Sort Transcript or Video?

Target \rightarrow	None	Transcript	Video			
Dataset \downarrow	Baseline	Ours	VCOP [55]	MERLOT [57]	MERLOT-like	
UCF-101 HMDB-51	81.2 (↓2.2) 56.5 (↓1.9)	83.4 58.4	79.1 (↓4.3) 54.2 (↓4.2)	74.9 (↓8.5) 49.6 (↓8.8)	80.1 (↓3.3) 55.4 (↓3.0)	

Table 1. Comparison with methods that use ordering-based pretext tasks for pre-training.

The model pre-trained only with \mathcal{L}_{base} serves as the baseline.

Sorting shuffled videos in pre-training is infeasible and counterintuitive for improving spatiotemporal representations.

Sort Implementation

Name	\mathcal{L}_{base}	\mathcal{L}_{sort}	sg	SSV2	Kinetics-400
M _{scratch}	×	×	12	64.5 (↓4.0)	75.4 (↓3.4)
M _{base}	\checkmark	×	-	67.0 (↓1.5)	77.8 (↓1.0)
$M_{sort \setminus sg}$	×	\checkmark	×	failed	failed
M _{sort}	×	\checkmark	\checkmark	failed	failed
Mours\sg	1	\checkmark	×	66.2 (↓2.3)	76.5 (↓2.3)
Mours	\checkmark	1	1	68.5	78.8

Table 2. The top-1 accuracy under the fine-tuning protocol w.r.t. different objectives. "sg" denotes stopping gradients of \mathcal{L}_{sort} towards encoding transcript representations.

Dataset	None	Sort Modeling				
Dutubet	Baseline	Pairwise	Factorial	K-way		
SSV2	67.0 (↓1.5)	67.4 (↓1.1)	67.2 (↓1.3)	68.5		
K400	77.8 (↓1.0)	78.1 (↓0.7)	78.0 (↓0.8)	78.8		

Table 3. The top-1 accuracy under the fine-tuning protocol w.r.t. different ways to model TVTS. The model pre-trained with \mathcal{L}_{base} serves as the baseline.

> TVTS can effectively regularize our model to learn transferable video representations.

- \succ M_{ours\sg} drops performance, because the model learns from shortcuts.
- > Both *Pairwise* and *Factorial* drop performance.

Transferability Evaluation

Method	Venue	Pre-train Dataset	Zero-sho	Linear Probe				
			R@1	R@5	R@10			
Spatiotemporal rep	presentation lea	rning method(s)						
CVRL [44]	CVPR'21	Kinetics-400	-	-	-	11.4 (↓20.1)		
MViT [16]	ICCV'21	Kinetics-400	-	-	-	19.4 (↓12.1)		
SCVRL [14]	CVPRW'22	Kinetics-400	-	-	-	13.8 (↓17.7)		
SVT [46]	CVPR'22	Kinetics-400	11.3 (↓3.4)	30.7 (↓7.7)	41.1 (↓9.4)	18.3 (↓13.2)		
SVT [†] [46]	CVPR'22	YT-Temporal	9.9 (↓4.8)	26.2 (↓12.2)	36.3 (↓14.2)	18.0 (↓13.5)		
VideoMAE [51]	NeurIPS'22	Kinetics-400	7.9 (↓6.8)	18.6 (↓19.8)	26.5 (↓24.0)	17.9 (↓13.6)		
VideoMAE [†] [51]	NeurIPS'22	YT-Temporal	7.2 (↓7.5)	17.6 (↓20.8)	25.6 (\$24.9)	15.9 (↓15.6)		
Video-text alignme	nt method(s)							
Frozen [‡] [4]	ICCV'21	CC3M, WebVid-2M	10.4 (↓4.3)	28.5 (↓9.9)	38.7 (↓11.8)	17.5 (↓14.0)		
MCQ [‡] [20]	CVPR'22	CC3M, WebVid-2M	10.4 (↓4.3)	28.6 (↓9.8)	38.5 (↓12.0)	18.0 (↓13.5)		
MILES [‡] [21]	ECCV'22	CC3M, WebVid-2M	10.3 (↓4.4)	28.4 (↓10.0)	38.4 (↓12.1)	18.6 (↓12.9)		
Image representation learning method(s)								
CLIP [45]	ICML'21	WIT	10.5 (↓4.2)	28.8 (↓9.6)	38.8 (↓11.7)	16.4 (↓15.1)		
Ours	CVPR'23	YT-Temporal	14.7	38.4	50.5	31.5		

Table 4. Transferability evaluation on SSV2. We report Recall@K for zero-shot video-to-video retrieval and top-1 accuracy for linear probe classification, where video-to-video retrieval aims to retrieve videos of the same category as a query video.

Fine-tuning Performance

_ _ _

Method	Backbone	Pre-train Dataset	SSV2	K400				
TSM [38]	$R50 \times 2$	ImageNet-1K	66.0	-				
Vi ² CLR [13]	S3D	Kinetics-400	-	71.2				
CORP [27]	R3D-50	Kinetics-400	48.8	-	Method	Backbone	UCF-101	HMDB-51
MoCo v3 [10]	ViT-B	Kinetics-400	62.4	2	litethod	Duckbone		
TANet [41]	$R50 \times 2$	ImageNet-1K	66.0	-	BE [53]	I3D	87.1	56.2
MViT [16]	ViT-B	Kinetcis-400	64.7	78.4	CMD [29]	R(2+1)D-26	85.7	54.0
TimeSformer [6]	ViT-B	ImageNet-21K	59.5	78.3	Vi ² CLR [13]	S3D	89.1	55.7
RSANet [33]	R50	ImageNet-1K	66.0	-	ASCNet [28]	S3D-G	90.8	60.5
SVT [46]	ViT-B	Kinetics-400	59.2	78.1	TEC [30]	S3D-G	88.2	63.5
VideoMAE [†] [51]	ViT-B	YT-Temporal	67.9	78.2	LSFD [5]	C3D	79.8	52.1
Frozen [‡] [4]	ViT-B	CC3M, WebVid2M	55.1	76.9	MCN [39]	R3D	89.7	59.3
MCQ^{\ddagger} [20]	ViT-B	CC3M, WebVid2M	51.5	77.8	TCLR [11]	R(2+1)D-18	84.3	54.2
MILES [‡] [21]	ViT-B	CC3M, WebVid2M	54.1	77.4	SVT [46]	ViT-B	93.7	67.2
OmniVL [52]	ViT-B	*Enormous Datasets		79.1	VideoMAE [†] [51]	ViT-B	94.2	68.4
CLIP [45]	ViT-B	WIT	36.3	75.2	Frozen [‡] [4]	ViT-B	91.4	65.6
Ours	ViT-B	YT-Temporal	68.5	78.8	$MCQ^{\ddagger}[20]$	ViT-B	92.9	65.1
Ouis	VII-D	YT-Temporal	00.5	/0.0	MILES [‡] [21]	ViT-B	92.1	66.8
Ours	ViT-B	CC3M, WebVid2M	69.1	79.8	Ours	ViT-B	95.1	70.5

Table 5 & 7. The top-1 accuracy under the fine-tuning protocol. † denotes pre-training on YT-Temporal, and ‡ denotes the use of official pre-trained weights for evaluation.

Conclusion

- □ We exploit the rich semantics from script knowledge which is naturally along with the video, rendering a flexible pre-training method that can easily apply to uncurated video data in the real world.
- We introduce a novel pretext task for video pre-training, namely, *Turing to Video for Transcript Sorting (TVTS)*. It promotes the capability of the model in learning transferable spatiotemporal video representations.
- We conduct comprehensive comparisons with advanced methods. Our pre-trained model exhibits strong out-of-the-box transferability on downstream tasks.

Learning Transferable Spatiotemporal Representations from Natural Script Knowledge

Ziyun Zeng^{1,2*} Yuying Ge^{3*} Xihui Liu³ Bin Chen⁴ Ping Luo³ Shu-Tao Xia¹ Yixiao Ge²

¹Tsinghua University ²Applied Research Center (ARC), Tencent, PCG ³The University of Hong Kong ⁴Harbin Institute of Technology, Shenzhen

* equal contribution ^m corresponding authors

Code avaliable at

https://github.com/TencentARC/TVTS