

DISC: Learning from Noisy Labels via Dynamic Instance-Specific Selection and Correction

Yifan Li^{1,2}, Hu Han^{1,2,3}, Shiguang Shan^{1,2,3}, Xilin Chen^{1,2}

1. Institute of Computing Technology, Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Peng Cheng Laboratory

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2023

Overview

Framework of **DISC**

Contents

- Introduction
- Method
- Experiments
- Conclusion

Motivation

The memorization strength of DNNs towards different instances increases as training progresses

Motivation Exploiting information in noisy set by "divide and conquer" strategy

Contributions

- The memorization strength of DNNs towards individual instances can be denoted by confidence, which increases along with training
- □ Dynamic instance-specific threshold is proposed for selecting reliable labels and correcting noisy labels following an easy-to-hard curriculum
- We propose a "divide and conquer" strategy. The dynamic threshold strategy is leveraged to group noisy data into three different subsets and different regularization strategies are utilized to handle individual subsets

Method

Dynamic instance-specific threshold

(a) The global threshold

(b) The Class-wise threshold (c)

(c) The dynamic instancespecific threshold

Momentum of confidence

$$\tau(t) = \lambda \tau(t-1) + (1-\lambda)p(t), \ \tau(0) = 0$$

$$\tau'(t) = max(\tau(t) + \sigma, 0.99)$$

Method

Divide and conquer Divide

 The entire noisy set is divided into three different subsets according to the intersection of two views' predictions and the noisy labels

$$\mathcal{C} = \{x_i, y_i | p_w(y_i; x_i) > \tau_w(t)\}$$

$$\cap \{x_i, y_i | p_s(y_i; x_i) > \tau_s(t)\}$$

$$\mathcal{H} = \{x_i, y_i | p_w(y_i; x_i) > \tau_w(t)\} \cup$$

$$\{x_i, y_i | p_s(y_i; x_i) > \tau_s(t)\} - \mathcal{C}$$

$$\mathcal{P} = \{x_i, \hat{y}_c = \arg\max_c p_{ws}(c; x_i) | \max_c p_{ws}(c; x_i) > \tau'(t),$$

$$\forall c \in \mathcal{Y}\} - \{\mathcal{C} \cup \mathcal{H}\}$$

$$\mathcal{M} = \{\mathcal{C} \cup \mathcal{H} \cup \mathcal{P}\}$$

Method

Divide and conquer Conquer

• Different regularization strategies are adopted to conquer individual subsets

$$\mathcal{C} \longleftrightarrow L_{\mathcal{C}} = -\frac{1}{N} \sum_{i=1}^{N_c} (\log p_w(y_i; x_i) + \log p_s(y_i; x_i))$$

$$\mathcal{H} \longleftrightarrow L_{\mathcal{H}} = \frac{1}{N} \sum_{i=1}^{N_h} (\frac{1 - p_w(y_i; x_i)^q}{q} + \frac{1 - p_s(y_i; x_i)^q}{q})$$

$$\mathcal{M}(\mathcal{C}\cup\mathcal{H}\cup\mathcal{P}) \iff L_{\mathcal{M}} = \frac{1}{N} \sum_{i=1}^{N_{m}} L_{bce}(p_{w}(c;\tilde{x}_{i}^{w}),\tilde{\mathbf{y}}_{i}^{w}) + L_{bce}(p_{s}(c;\tilde{x}_{i}^{s}),\tilde{\mathbf{y}}_{i}^{s})$$

Single noisy label image classification Datasets

Datasets	# Class	Scale	Noise ratio	Noise sources
CIFAR10	10	60K	$\rho \in \{20\%, 40\%, 60\%\}$	Inst.
CIFAR100	100	60K	$\rho \in \{20\%, 40\%, 60\%\}$	Inst.
Tiny-ImageNet	200	120K	$ ho \in \{20\%, 50\%, 45\%\}$	Sym., asym.
Clothing1M	14	1,074K	38.5%	Real-world
WebVision	50	100K	20%	Real-world
Food101N	101	101K	18.4%	Real-world
Animals-10N	10	55K	8%	Real-world

#True

#Total

Comparison with SOTA methods on CIFAR with Inst. noise

Dataset		CIFAR-10			CIFAR-100	
Noise type	Inst. 20%	Inst. 40%	Inst. 60%	Inst. 20%	Inst. 40%	Inst. 60%
CE*	83.93 ± 0.15	67.64 ± 0.26	43.83 ± 0.33	57.35 ± 0.08	43.17 ± 0.15	24.42 ± 0.16
Forward T [36]	87.22 ± 1.60	79.37 ± 2.72	66.56 ± 4.90	58.19 ± 1.37	42.80 ± 1.01	27.91 ± 3.35
DMI [36]	88.57 ± 0.60	82.82 ± 1.49	69.94 ± 1.34	57.90 ± 1.21	42.70 ± 0.92	26.96 ± 2.08
Mixup* [56]	87.71 ± 0.66	82.65 ± 0.38	58.59 ± 0.58	46.31 ± 0.25	45.14 ± 0.31	23.77 ± 0.26
GCE* [58]	89.80 ± 0.12	78.95 ± 0.15	60.76 ± 3.08	58.01 ± 0.26	45.69 ± 0.14	35.08 ± 0.23
Co-teaching [17]	88.87 ± 0.24	73.00 ± 1.24	62.51 ± 1.98	43.30 ± 0.39	23.21 ± 0.57	12.58 ± 0.58
Co-teaching+ [53]	89.80 ± 0.28	73.78 ± 1.39	59.22 ± 6.34	41.71 ± 0.78	24.45 ± 0.71	12.58 ± 0.58
JoCoR [47]	88.78 ± 0.15	71.64 ± 3.09	63.46 ± 1.58	43.66 ± 1.32	23.95 ± 0.44	13.16 ± 0.91
Reweight-R [49]	90.04 ± 0.46	84.11 ± 2.47	72.18 ± 2.47	58.00 ± 0.36	43.83 ± 8.42	36.07 ± 9.73
Peer Loss [33]	89.12 ± 0.76	83.26 ± 0.42	74.53 ± 1.22	61.16 ± 0.64	47.23 ± 1.23	31.71 ± 2.06
DivideMix [29]	93.33 ± 0.14	95.07 ± 0.11	85.50 ± 0.71	79.04 ± 0.21	76.08 ± 0.35	46.72 ± 1.32
$CORSES^2$ [7]	91.14 ± 0.46	83.67 ± 1.29	77.68 ± 2.24	66.47 ± 0.45	58.99 ± 1.49	38.55 ± 3.25
CAL [62]	92.01 ± 0.12	84.96 ± 1.25	79.82 ± 2.56	69.11 ± 0.46	63.17 ± 1.40	43.58 ± 3.30
CC [59]	$\underline{93.68\pm0.12}$	$\underline{94.97\pm0.09}$	$\underline{94.95\pm0.11}$	$\underline{79.61 \pm 0.19}$	$\underline{76.58\pm0.25}$	$\underline{59.40\pm0.46}$
DISC (ours)	$\overline{\textbf{96.48}\pm\textbf{0.04}}$	$\overline{\textbf{95.94}\pm\textbf{0.04}}$	$\overline{\textbf{95.05}\pm\textbf{0.05}}$	$\overline{\textbf{80.12}\pm\textbf{0.13}}$	$\overline{\textbf{78.44}\pm\textbf{0.19}}$	$\overline{\textbf{69.57} \pm \textbf{0.14}}$

Comparison with the SOTA methods on Tiny ImageNet with sym. and asym. noise.

Noise	Sym. 0%		Sym.	Sym. 20%		Sym. 50%		Asym. 45%	
Methods	Avg.	Best	Avg.	Best	Avg.	Best	Avg.	Best	
Standard	56.7	57.4	35.6	35.8	19.6	19.8	26.2	26.3	
Decoupling [34]	-	-	36.3	37.0	22.6	22.8	26.1	26.6	
F-Correction [36]	-	-	-	-	32.8	33.1	0.6	0.67	
MentorNet [23]	-	-	-	-	35.5	35.8	26.2	26.6	
Co-teaching+ [53]	52.1	52.4	47.7	48.2	41.2	41.8	26.5	26.9	
M-Correction [1]	57.2	57.7	56.6	57.2	51.3	51.6	24.1	24.8	
NCT [37]	61.5	62.4	57.2	58.2	47.4	47.8	42.4	43.0	
UNICON [24]	62.7	63.1	58.4	59.2	52.4	52.7	-	-	
DISC (Ours)	68.2	68.5	67.5	67.9	63.9	64.3	52.8	53.6	

Comparison with the SOTA methods on Animals-10N, Food-101, WebVision and Clothing1M

□ Animals-10N

□ WebVision

Method	Accuracy (%)
CE [11]	79.4 ± 0.14
GCE* (2018) [58]	$81.5{\pm}~0.08$
SELFIE (2019) [40]	81.8 ± 0.09
Mixup* (2017) [56]	82.7 ± 0.03
Co-learning (2021) [43]	83.0
PLC (2021) [57]	83.4 ± 0.43
Nested Co-teaching (2021) [6]	84.1 ± 0.1
GJS (2021) [11]	84.2 ± 0.07
DISC (ours)	$\textbf{87.1} \pm \textbf{0.15}$

□ Food-101

Method	Accuracy (%)
CE [11]	81.67
CleanNet (2018) [28]	83.95
GCE* (2018) [58]	85.83
PLC (2021) [57]	83.4
GJS (2021) [11]	86.56
Mixup* (2017) [56]	87.34
Co-learning (2021) [43]	<u>87.57</u>
DISC (ours)	89.02

Dataset	Weby	Vision	ILSVRC12		
Accuracy (%)	top1	top5	top1	top5	
F-correction (2017) [36]	61.12	82.68	57.36	82.36	
Decoupling (2017) [34]	62.54	84.74	58.26	82.26	
D2L (2019) [27]	62.68	84.00	57.80	81.36	
MentorNet [23]	63.00	81.40	57.80	79.92	
Co-teaching (2018) [17]	63.58	85.20	61.48	84.70	
INCV (2019) [5]	65.24	85.34	61.60	84.98	
MentorMix (2020) [22]	76.0	90.2	72.9	91.1	
ELR (2020) [32]	76.26	91.26	68.7	87.8	
DivideMix (2020) [29]	77.32	91.64	75.20	90.84	
ELR+ (2020) [32]	77.78	91.68	70.29	89.76	
RRL (2021) [30]	77.8	91.3	74.4	90.9	
GJS (2021) [11]	77.99	90.62	74.33	90.33	
CC (2022) [59]	79.36	93.64	76.08	93.86	
DISC (ours)	80.28	<u>92.28</u>	77.44	<u>92.28</u>	

□ Clothing1M

Method	Accuracy (%)
СЕ	68.94
Co-teaching (2018) [17]	69.21
JoCoR (2018) [47]	70.30
DMI (2019) [51]	72.46
DivideMix* (2019) [29]	74.45
ELR+* (2020) [32]	74.39
GJS (2021) [11]	71.64
CAL (2021) [62]	74.17
AugDesc* (2021) [35]	74.33
CC* (2022) [59]	<u>74.54</u>
DISC (ours)	73.72
DIST+DivideMix	74.79

■ The size ratio of different subsets on CIFAR (40% IDN)

14

The noise suppression on CIFAR (40% IDN)

(b) Label noise rate in \mathcal{M}

15

Ablation Study

Ablation study on CIFAR under inst. noise 20%, 40% and 60%

Modules					CIFA	R-10	CIFAR-100		
Tw	vo views	DIST	\mathcal{H}	\mathcal{M}	Inst. 20%	Inst. 40%	Inst. 20%	Inst. 40%	
					83.93	67.63	53.35	43.16	
	\checkmark				85.62	70.09	66.87	52.42	
		\checkmark			92.81	88.85	74.11	70.11	
	\checkmark	\checkmark			94.44	92.80	76.39	72.41	
	\checkmark	\checkmark	\checkmark		94.52	92.82	76.45	72.51	
	\checkmark	\checkmark		\checkmark	96.31	95.74	79.88	78.29	
	\checkmark	\checkmark	\checkmark	\checkmark	96.48	95.94	80.12	78.44	

□ Test acc. of the different views on CIFAR

Dataset		CIFAR-10		CIFAR-100			
Noise type	Inst. 20%	Inst. 40%	Inst. 60%	Inst. 20%	Inst. 40%	Inst. 60%	
DISC-W	95.73	94.32	88.37	78.18	75.21	66.88	
DISC-WW	96.20	94.47	93.65	79.24	77.67	68.85	
DISC-WS	96.48	95.94	94.86	80.12	78.44	69.57	

□ Test acc. of different selection methods on CIFAR

Dataset		CIFAR-10		CIFAR-100			
Noise type	Inst. 20%	Inst. 40%	Inst. 60%	Inst. 20%	Inst. 40%	Inst. 60%	
Small-losses [16]	90.83	84.81	21.47	71.82	63.89	22.56	
GMM [28]	92.78	85.12	48.81	72.91	30.73	11.19	
Fixed thres. 0.5 [29]	84.25	60.53	20.85	61.37	45.40	14.78	
DIST	92.81	88.85	80.66	74.11	70.01	60.07	

Training and testing time profiling with PresNet-34 backbone and RTX 3090 GPU on CIFAR-10 with 20% inst. noise in one epoch

Conclusion

- Memorization strength of DNNs towards individual instances could be reflected by confidences, which become higher along with training
- DISC is able to set a reasonable threshold for each instance and delicately divide the noisy data into different subsets, which can effectively suppress the label noise during classification learning
- However, DISC may also induce confirmation bias, since highconfidence instances may be the easy ones with noisy labels rather than the clean ones

Thank you for listening :)

Our paper and code are available:

Feel free to contact Yifan Li via:

Paper

Code

liyifan20g@ict.ac.cn

Backgrounds Label noise widely exists in the test sets of different datasets

Dataset	Modality	Size	Model		Test Se	et Errors		
DataSet	Withutty		WIUUUI	CL guessed	MTurk checked			
MNIST	image	10,000	2-conv CNN		100 (100%)			0.15
CIFAR-10	image	10,000	VGG	. 275	275 (100%)	54		
CIFAR-100	Inere	also exis	sts label noi	se in the	validation	I Set 85		
	image	29,780	Wide ResNet-50-2		2,360 (100%)			
ImageNet [*]	image		ResNet-50	5,440	5,440 (100%)	2,916		
QuickDraw [†]	image	50,426,266	VGG	6,825,383	2,500 (0.04%)	1870	5,105,386	
20news	e trainii	ng set n	hay be even	noisier	inan the te	est set	-	
IMDB	text	25,000	FastText	1,310	1,310 (100%)			2.90
Amazon Reviews [†]	text	9,996,437	FastText	533,249	1,000 (0.2%)		390,338	
AudioSet			VGG		307 (100%)			

Because the ImageNet test set labels are not publicly available, the ILSVRC 2012 validation set is used.

Because no explicit test set is provided, we study the entire dataset to ensure coverage of any train/test split.

Northcutt, Curtis G., Anish Athalye, and Jonas Mueller. "Pervasive label errors in test sets destabilize machine learning benchmarks." *arXiv preprint* arXiv:2103.14749 (2021).

Backgrounds

D Label noise will harm the generalization ability of model

- The model selected by validation set is sub-optimal
- DNNs tend to **memorize** the label noise in the training set

(a) Test set accuracy