

RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving

Angelika Ando^{1,2}, Spyros Gidaris¹, Andrei Bursuc¹, Gilles Puy¹, Alexandre Boulch¹, Renaud Marlet^{1,3}

¹Valeo.ai, Paris, France ²Centre for Robotics, Mines Paris - Université PSL, Paris, France ³LIGM, Ecole des Ponts, Univ. Gustave Eiffel, CNRS, Marne-la-Vallée, France

TUE-PM-105

Angelika Ando

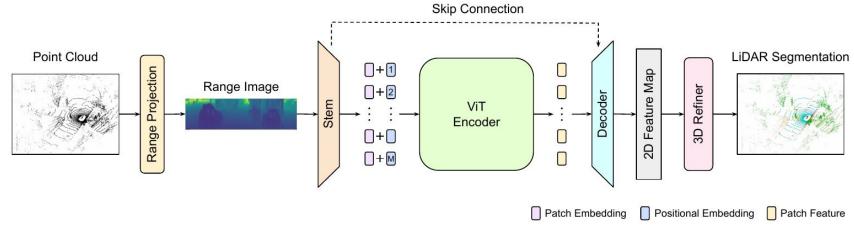
Spyros Gidaris

Andrei Bursuc

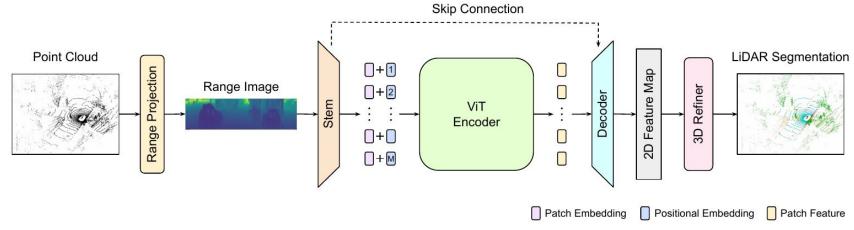
Gilles Puy

Renaud Marlet

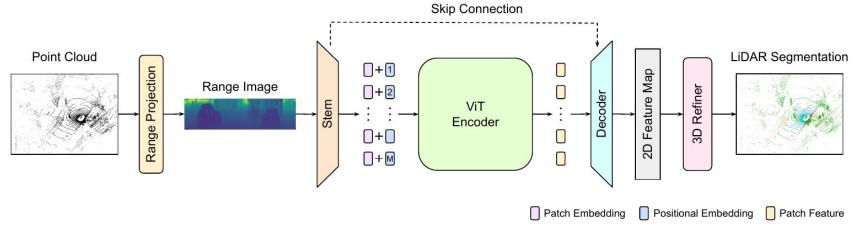
Alexandre Boulch



Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?



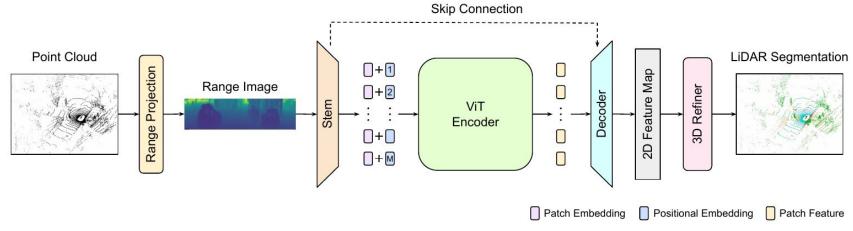
Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?



Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

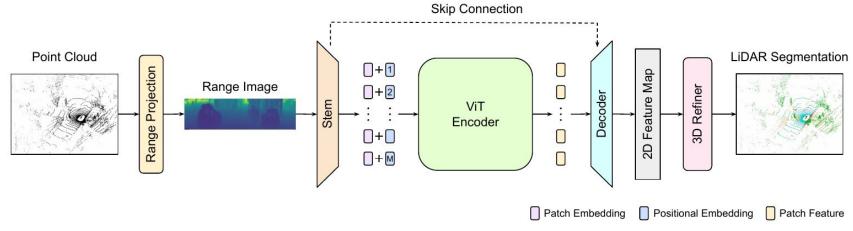
Yes, with RangeViT: a simple ViT-based point cloud segmentation method.

• **Exploits the strong representation learning** capacity of ViTs for LiDAR segmentation.



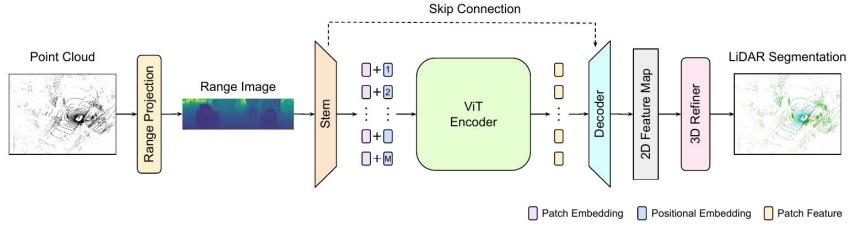
Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

- **Exploits the strong representation learning** capacity of ViTs for LiDAR segmentation.
- **Unify architectures** in LiDAR and image domain ⇒ Any advance in one domain benefits to both.



Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

- **Exploits the strong representation learning** capacity of ViTs for LiDAR segmentation.
- **Unify architectures** in LiDAR and image domain ⇒ Any advance in one domain benefits to both.
- Leverages ViTs pre-trained on large RGB image datasets for LiDAR segmentation.



Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

- Exploits the strong representation learning capacity of ViTs for LiDAR segmentation.
- **Unify architectures** in LiDAR and image domain ⇒ Any advance in one domain benefits to both.
- Leverages ViTs pre-trained on large RGB image datasets for LiDAR segmentation.
- Strong LiDAR segmentation results ⇒ **Surpasses prior projection-based methods**.

Method	nuScenes mIoU (%)	SemKITTI mIoU (%)
Voxel-based		
Cylinder3D	76.1	67.8
2D Projection-based		
RangeNet++	65.5	52.2
PolarNet	71.0	54.3
SalsaNext	72.2	59.5
KPRNet	-	63.1
Lite-HDSeg	-	63.8
RangeViT-CS (ours)	75.2	64.0

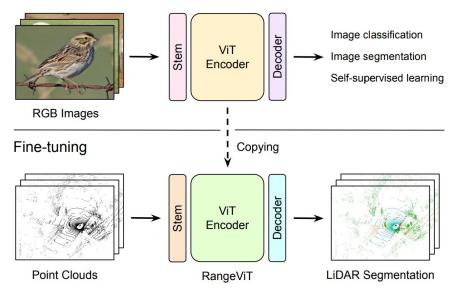
Motivation

Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

Yes, with RangeViT!

- Simple ViT-based point cloud segmentation method.
- Same ViT backbone (and pre-trained weights) as in the image domain.

Pre-training



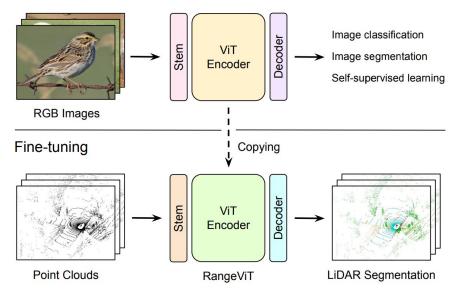
Motivation

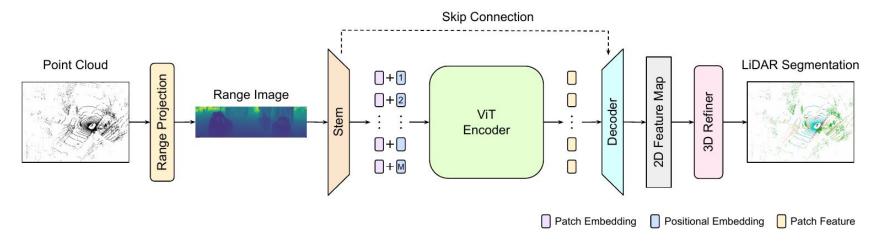
Can 3D LiDAR semantic segmentation benefit from the latest improvements on Vision Transformers?

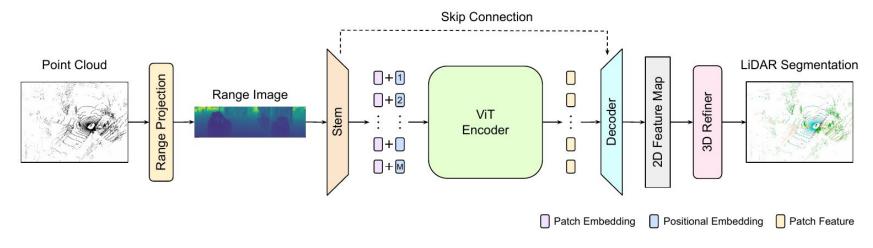
Yes, with RangeViT!

- Simple ViT-based point cloud segmentation method.
- Same ViT backbone (and pre-trained weights) as in the image domain.
- ViT tokenization adapted for LiDAR data.
- Fast point cloud processing by 2D range projection.

Pre-training

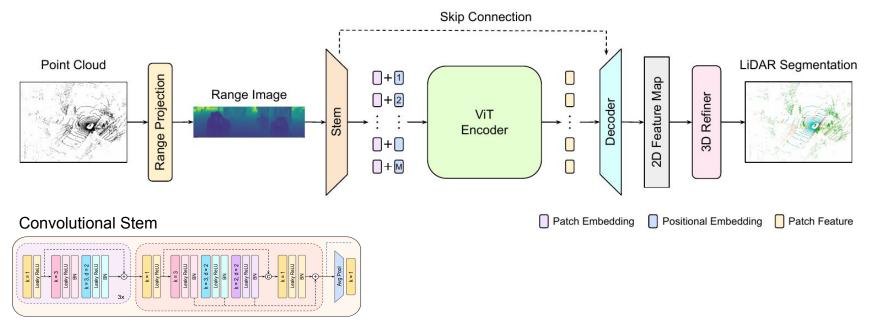






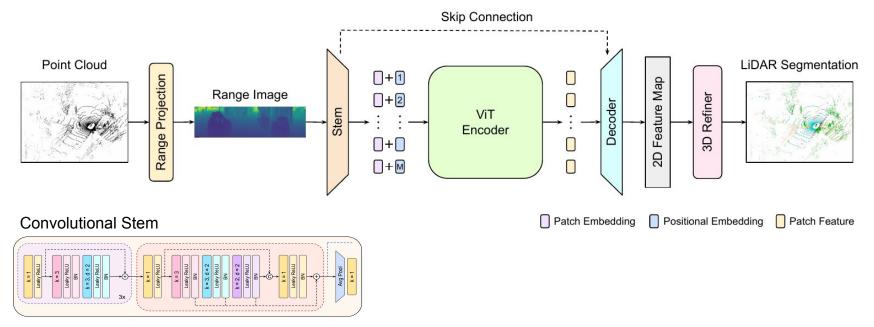
What makes an effective ViT architecture for 3D LiDAR segmentation?

Use non-linear convolution stem



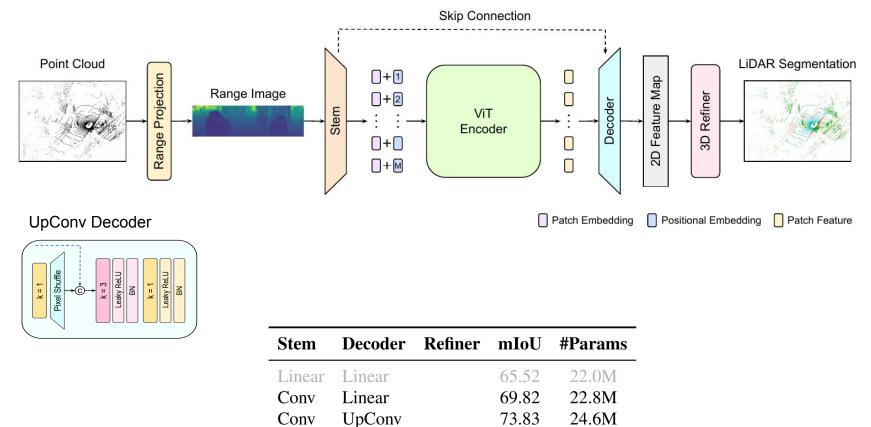
Stem	Decoder	Refiner	mIoU	#Params
Linear	Linear		65.52	22.0M
Conv	Linear		69.82	22.8M
Conv	UpConv		73.83	24.6M
Conv	UpConv	\checkmark	74.60	25.2M

Use non-linear convolution stem



Stem	Decoder	Refiner	mIoU	#Params
Linear	Linear		65.52	22.0M
Conv	Linear		69.82	22.8M
Conv	UpConv		73.83	24.6M
Conv	UpConv	\checkmark	74.60	25.2M

Use non-linear (UpConv) decoder



 \checkmark

74.60

25.2M

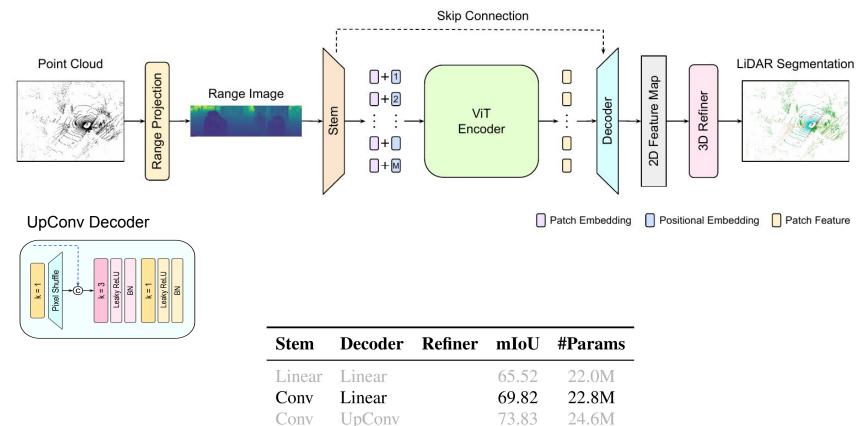
UpConv

Conv

Use non-linear (UpConv) decoder + 3D Refiner

Conv

UpConv

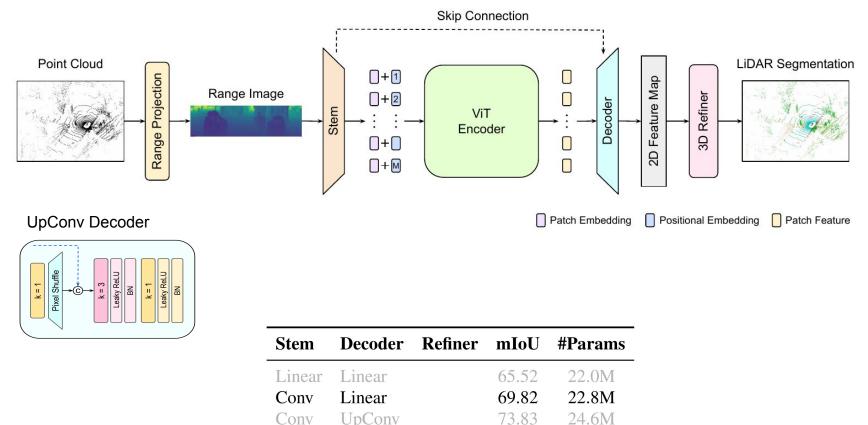


 \checkmark

25.2M

74.60

Use non-linear (UpConv) decoder + 3D Refiner



v

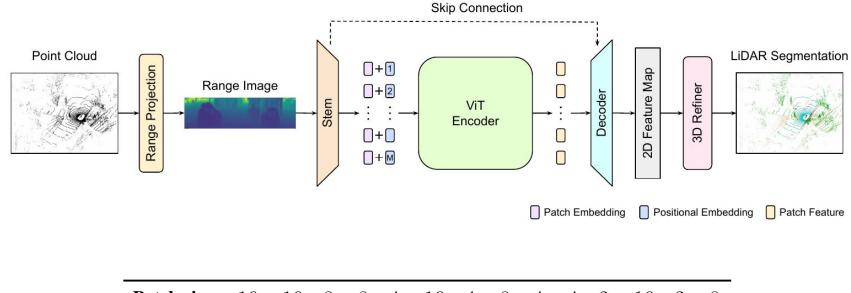
UpConv

Conv

74.60

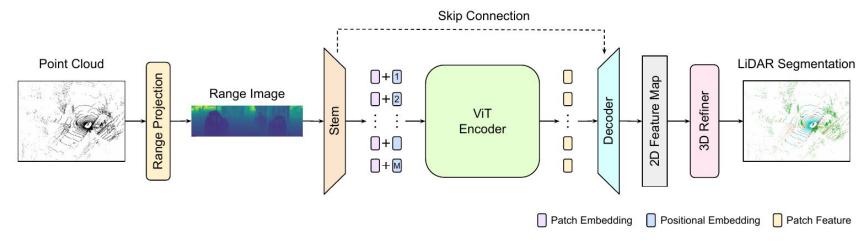
25.2M

What patch-size for range image "tokenization"?



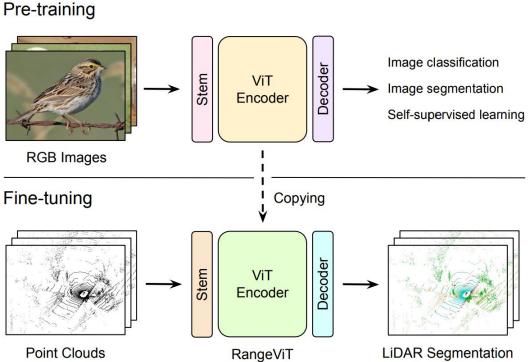
Patch size	16×16	8×8	4×16	4×8	4×4	2×16	2×8
mIoU	68.45	72.04	72.72	73.30	73.70	73.88	75.21
#Tokens Train time	49 ×1	193 ×1.02	193 ×1.02	385 ×1.13	769 ×1.43	385 ×1.13	769 ×1.43

What patch-size for range image "tokenization"?



Patch size	16×16	8×8	4×16	4×8	4×4	2×16	2×8
mIoU	68.45	72.04	72.72	73.30	73.70	73.88	75.21
#Tokens Train time	49 ×1	193 ×1.02	193 ×1.02	385 ×1.13		385 ×1.13	769 ×1.43

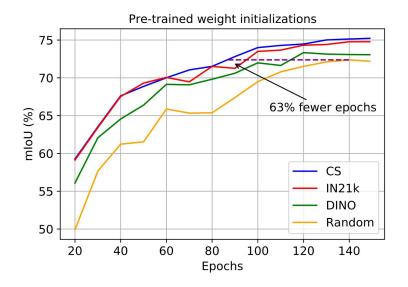
Exploiting image-pre-trained ViTs for LiDAR segmentation



Is pre-training on RGB images beneficial?

DINO: self-supervised pre-trained on ImageNet1k. IN21k: supervised on ImageNet21k.

Cityscapes: supervised on ImageNet21k + supervised on Cityscapes.



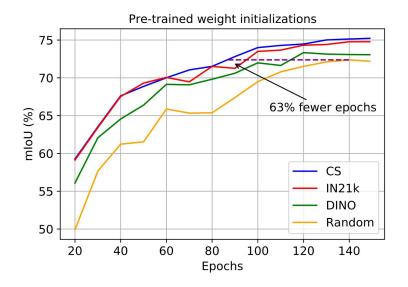
Pre-training	Rand	DINO	IN21k	Cityscapes
mIoU	72.37	73.33	74.77	75.21

Image-pretrained ViTs improve LiDAR segmentation performance and training efficiency.

Is pre-training on RGB images beneficial?

DINO: self-supervised pre-trained on ImageNet1k. IN21k: supervised on ImageNet21k.

Cityscapes: supervised on ImageNet21k + supervised on Cityscapes.



Pre-training	Rand	DINO	IN21k	Cityscapes
mIoU	72.37	73.33	74.77	75.21

Image-pretrained ViTs improve LiDAR segmentation performance and training efficiency.

Which ViT layers are better to fine-tune?

DINO: self-supervised pre-trained on ImageNet1k. IN21k: supervised on ImageNet21k.

Cityscapes: supervised on ImageNet21k + supervised on Cityscapes.

Model	Fine-tuning LN ATTN FFN		IN21k Cityscape mIoU		
model		111 111	1111		
(a)	 ✓ 	\checkmark	\checkmark	74.79	75.21
(b)				67.88	68.03
(c)	\checkmark			69.08	69.31
(d)	\checkmark	\checkmark		73.56	72.77
(e)	\checkmark		\checkmark	75.11	75.47

Partial fine-tuning of ViT backbone.

Which ViT layers is better to fine-tune?

DINO: self-supervised pre-trained on ImageNet1k. IN21k: supervised on ImageNet21k.

Cityscapes: supervised on ImageNet21k + supervised on Cityscapes.

	Fine-tuning				Cityscapes
Model	LN	ATTN	FFN	mIoU	
(a)	✓	\checkmark	\checkmark	74.79	75.21
(b)				67.88	68.03
(c)	\checkmark			69.08	69.31
(d)	\checkmark	\checkmark		73.56	72.77
(e)	\checkmark		\checkmark	75.11	75.47

Partial fine-tuning of ViT backbone.

The best results are achieved when the attention layers remain frozen.

Transferring to LiDAR segmentation: ViTs vs ResNet

Encoder	ViT-S [†]	ViT-S I	RN50 [†]	RN50
mIoU (%)	67.88	74.77	60.48	72.30

†: pretrained and fixed encoder ViT-S and ResNet50 encoders pre-trained on IN21k.

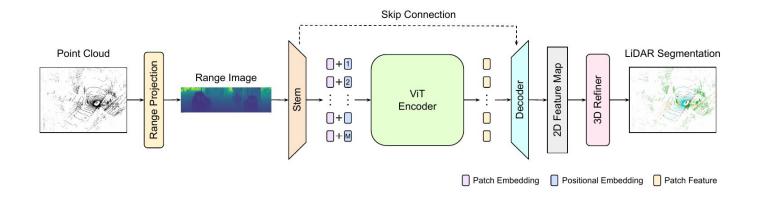
Image-pre-trained ViTs are more effectively transferred than ResNets.

Comparison to the state-of-the-art

Method	nuScenes mIoU (%)	SemKITTI mloU (%)	#Params	Inference Time
Voxel-based Cylinder3D	76.1	67.8	55.9M	49 ms
2D Projection-based				
RangeNet++	65.5	52.2	-	-
PolarNet	71.0	54.3	-	-
SalsaNext	72.2	59.5	6.7M	28 ms
KPRNet	-	63.1	213.2M	-
Lite-HDSeg	-	63.8	-	-
RangeViT-CS (ours)	75.2	64.0	27.1M	25 ms

RangeViT outperforms prior projection-based segmentation methods, reducing the gap with the strong voxel-based Cylinder3D method.

Conclusions



- RangeViT surpasses prior projection-based methods.
- **Unifies architectures** in the LiDAR and image domains. \Rightarrow Any advance in one domain benefits both.
- ViTs pre-trained on RGB images can be effectively transferred for LiDAR point cloud segmentation.

We thank you very much for your attention!