

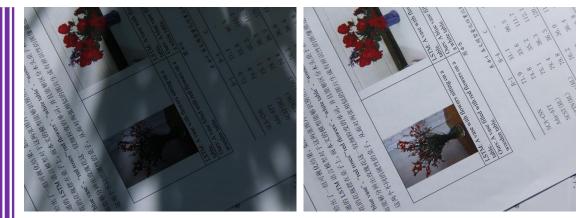
Document Image Shadow Removal Guided by Color-Aware Background

Poster ID:TUE-AM-173

Ling Zhang, Yinghao He, Qing Zhang, Zheng Liu, Xiaolong Zhang, Chunxia Xiao

Wuhan University of Science and Technology, Sun Yat-Sen University China University of Geosciences (Wuhan), Wuhan University

Document image shadow removal

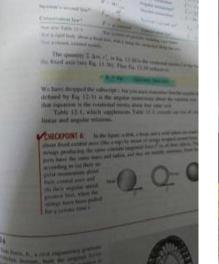


Shadows

- Low brightness
- Reduce the readability of the image

Domcument image shadow removal

- Remove shadows in the image
- Restore a clear image without changing the original content of the image



Shadow image

Shadow-removal result

- Natural image shadow removal methods
 - Generally perform poorly on document images

Document image

Natural image

Problem 1:

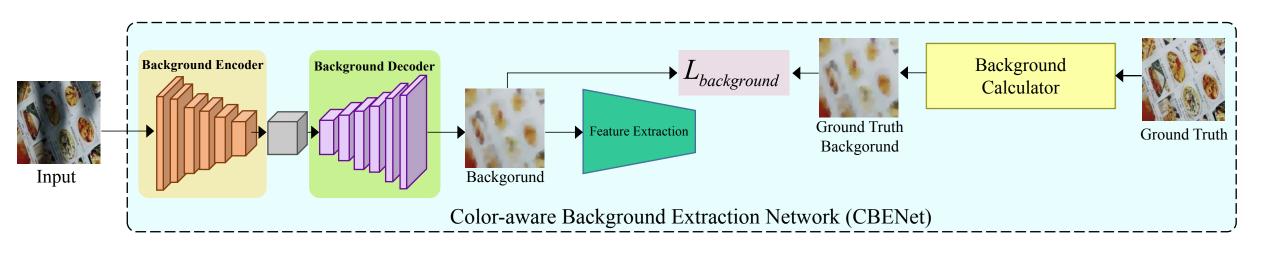
- Documnet images have drastically different
 - **features** from natural images
- **U** Without considering **the particular properties**
 - of the document images

- Document image shadow removal methods
 - Remove shadows using a constant background

Problem 2:

- Constant background is the color of the paper
- Provide inaccurate information

[1] Removing shadows from images of documents. ACCV2016.


[2] BEDSR-Net: A deep shadow removal network from a single document image. CVPR2020.

Proposed Approach-CBENet

- Color-aware background extraction network (CBENet)
 - Spatially varying background
 - Preserve various background colors of the original image

<section-header><section-header><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>	The first aid teache listen, read the wor about. Then listen t		<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	Deyon think line Would you have do Supyon think is a Usedening, speeking an The first aid teaching internet. Supyon think is a Usedening the second
Document imag	je	Our background	Our result	

Proposed Approach-CBENet

• Background calculator

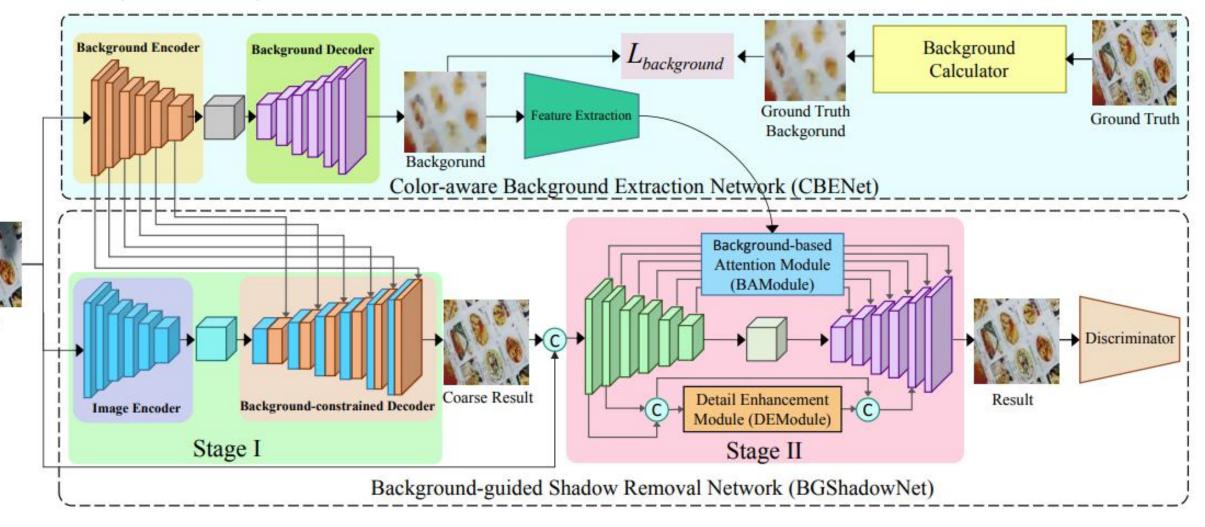
Ground truth

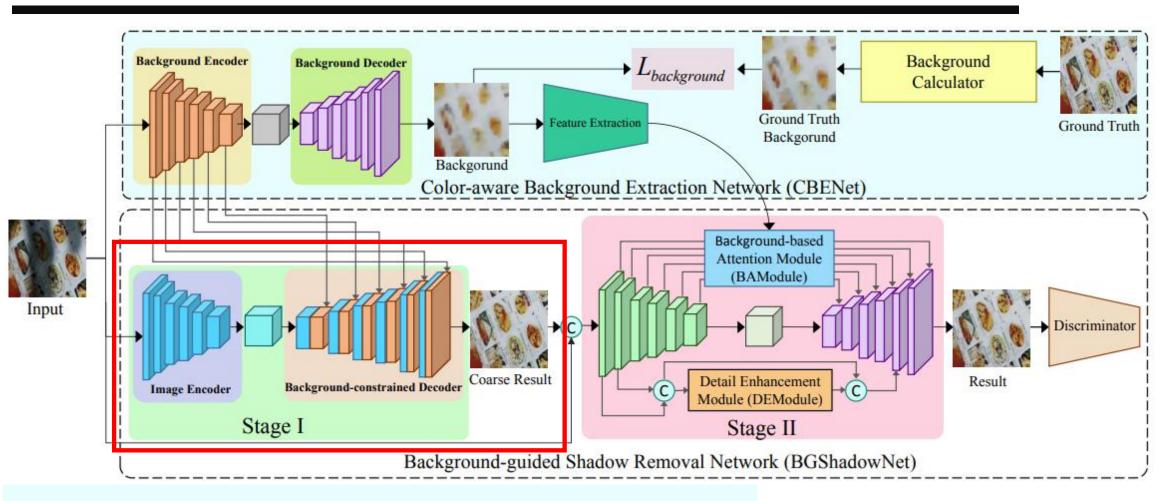
Local background

Our background

• Spatially varying color bakground

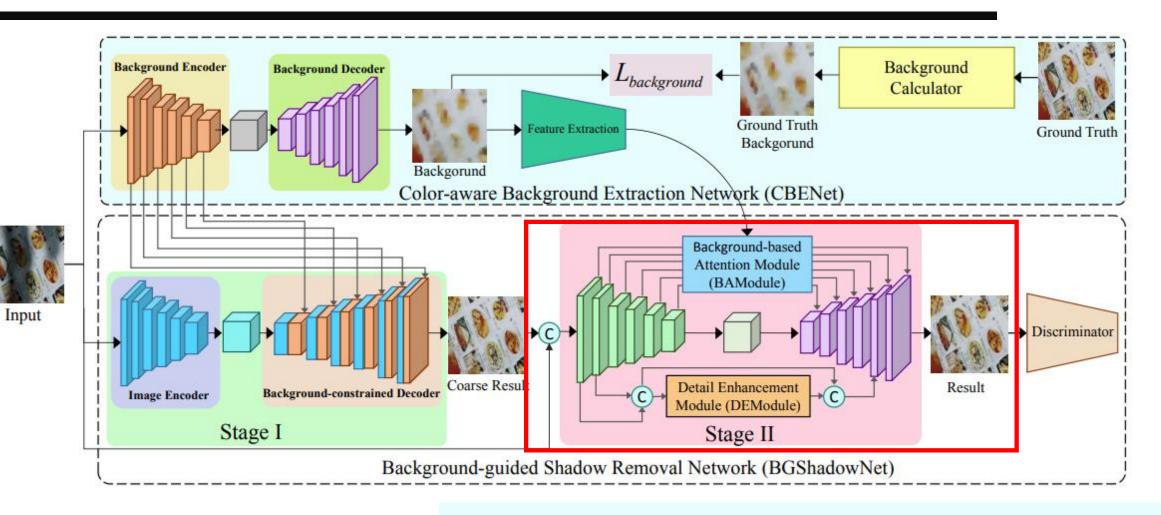
Input image

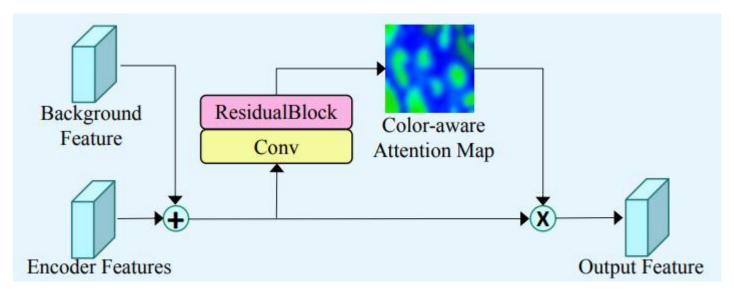




Extracted background

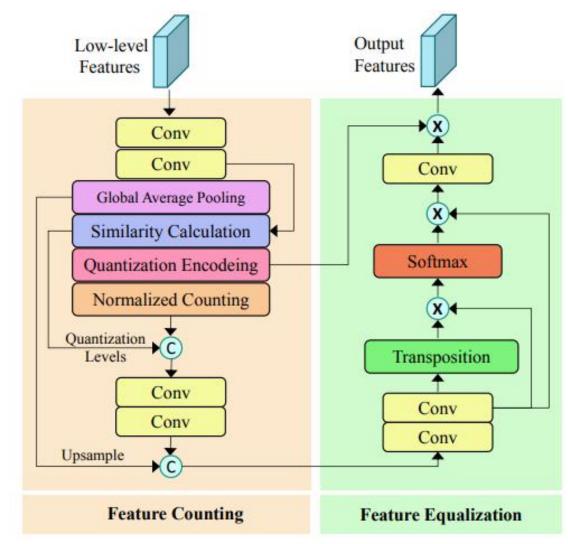
Input


• Background-guided shadow removal network (BGShadowNet)


Stage I: > Coarse shadow-removal result

Background-constrained decoder

Stage II: ➤ Background-based attention module➤ Detail enhancement module


- Background-based attention module
 - > Help to eliminate the appearance inconsistency in the image

The network of our background-based attention module (BAModule)

• Detail enhancement module

- Enhance the texture details of the coarse result
- Feature counting: get the quantization encoding map and statistical feature
- Feature equalization: enhance the texture details of low-level layers

Proposed Approach-Loss function

• Loss function for optimizing **CBENet**

► Background reconstruction loss $\mathcal{L}_{background} = ||B - \hat{B}||_1$

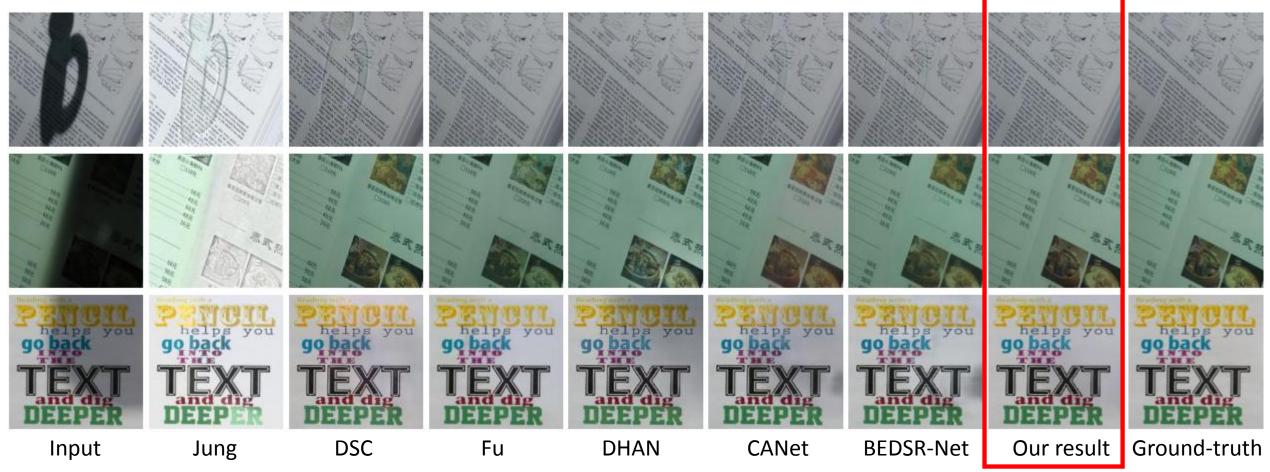
• Loss function for optimizing **BGShadowNet**

 $\textbf{P} \text{ Appearance consistency loss } \mathcal{L}_{appearance} = \lambda_1 \mathcal{L}_{coarse} + \lambda_2 \mathcal{L}_{final} \\ = \lambda_1 ||I_{gt} - I_{coarse}||_1 + \lambda_2 ||I_{gt} - I_{free}||_1$

➢ Structure consistency loss L_{stucture} = λ₃||VGG(I_{gt}) − VGG(I_{free})||²₂
➢ Adverarial loss L_{adv} = λ₄E_(I,I_{free},I_{gt})[log(D(I_{gt})) + log(1 − D(I))]

Dataset-RDD

- Available document shadow dataset
 - Bako, Kligler, Jung, RDSRD: small-scale evaluation datasets
 - SDSRD: large-scale dataset, synthetic dataset
- Our new document shadow dataset: **RDD**
 - The first large-scale real document dataset for shadow removal


shadow images

corresponding shadow-free images

shadow and shadow-free image pairs in RDD.

Comparison with State-of-the-arts

Jung: Water-filling: An efficient algorithm for digitized document shadow removal. ACCV2018. DSC: Direction-aware spatial context features for shadow detection and removal. PAMI,2020. Fu: Autoexposure fusion for single-image shadow removal. CVPR,2021. DHAN: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. AAAI, 2020. CANet: Canet: A context-aware network for shadow removal. ICCV,2021. BEDSR-Net: A deep shadow removal network from a single document image. CVPR2020.

Comparison with State-of-the-arts

Jung: Water-filling: An efficient algorithm for digitized document shadow removal. ACCV2018. DSC: Direction-aware spatial context features for shadow detection and removal. PAMI,2020. Fu: Autoexposure fusion for single-image shadow removal. CVPR,2021. DHAN: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. AAAI, 2020. CANet: Canet: A context-aware network for shadow removal. ICCV,2021. BEDSR-Net: A deep shadow removal network from a single document image. CVPR2020. BMNet: Bijective mapping network for shadow removal. CVPR,2022.

Comparison with State-of-the-arts-Quantitative comparisons

Methods	Venue/Year	RDD				Kligler	
		RMSE ↓	PSNR ↑	SSIM ↑	RMSE↓	PSNR ↑	SSIM ↑
ST-CGAN [39]	CVPR/2018	3.143	34.328	0.974	6.826	27.433	0.931
DSC [15]	PAMI/2020	6.357	28.151	0.914	7.705	25.615	0.898
DHAN [6]	AAAI/2020	2.467	36.337	0.978	6.610	27.707	0.937
Fu [11]	CVPR/2021	4.328	31.387	0.946	7.101	27.362	0.914
CANet [5]	ICCV/2021	5.561	28.951	0.918	7.855	25.625	0.899
SG-ShadowNet [36]	ECCV/2022	2.974	34.727	0.972	6.829	27.141	0.920
BMNet [51]	CVPR/2022	9.409	24.289	0.915	16.459	19.031	0.874
Bako [2]	ACCV/2016	14.648	20.741	0.894	9.058	24.777	0.895
Jung [19]	ACCV/2018	30.190	14.364	0.861	28.247	13.726	0.852
BEDSR-Net [24]	CVPR/2020	2.937	34.928	0.973	6.533	28.124	0.932
BGShadowNet	CVPR/2023	2.219	37.585	0.983	5.377	29.176	0.948

ST-CGAN: Stacked conditional generative adversarial networks for jointly learning shadow detection and shadow removal. CVPR,2018. SG-ShadowNet: Style-guided shadow removal. ECCV,2022. DSC: Direction-aware spatial context features for shadow detection and removal. PAMI,2020. CANet: Canet: A context-aware network for shadow removal. ICCV,2021. DHAN: Towards ghost-free shadow removal via dual hierarchical aggregation network and shadow matting gan. AAAI, 2020. Fu: Autoexposure fusion for single-image shadow removal. CVPR,2021. BEDSR-Net: A deep shadow removal network from a single document image. CVPR2020. Jung: Water-filling: An efficient algorithm for digitized document shadow removal. ACCV2018. BMNet: Bijective mapping network for shadow removal. CVPR,2022. Bako: Removing shadows from images of documents. ACCV,2016.

Ablation study-Quantitative results

Methods		RDD			Kligler	
Methods	RMSE↓	PSNR ↑	SSIM ↑	RMSE ↓	PSNR ↑	SSIM ↑
BASE ₁	2.942	34.821	0.938	6.253	28.267	0.944
BASE ₂	2.897	35.976	0.945	5.811	28.895	0.947
BGShadowNet1	2.603	36.052	0.980	5.805	28.371	0.944
BGShadowNet ₂	2.583	36.135	0.981	5.731	29.035	0.947
BGShadowNet ₃	2.433	36.681	0.982	5.538	29.180	0.947
BGShadowNet ₄	2.344	37.049	0.982	5.633	28.840	0.948
BGShadowNet	2.219	37.585	0.983	5.377	29.176	0.948

BASE1: one DenseUnet;BASE2: two stacked DenseUnet;BGShadowNet₂: BGShadowNet without DEModule and BAModule;BGShadowNet₄: BGShadowNet without DEModule.

BGShadowNet₁: BGShadowNet without StageII; **BGShadowNet**₃: BGShadowNet without BAModule;

Ablation study

BASE1: one DenseUnet;BASE2: two stacked DenseUnet;BGShadowNet2: BGShadowNet without DEModule and BAModule;BGShadowNet4: BGShadowNet without DEModule.

BGShadowNet₁: BGShadowNet without StageII; BGShadowNet₃: BGShadowNet without BAModule;

Conclusion

- Dataset: **RDD**
 - > The first large-scale real document dataset for shadow removal
- CBENet
 - Satially varing background for the shadow image
- BGShadowNet
 - Coarse-to-fine strategy
 - > Task network: remove shadows in the image

Thanks for watching.

Dataet available at <u>https://github.com/hyyh1314/RDD</u> Code available at <u>https://github.com/hyyh1314/BGShadowNet</u>