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Motivations
1 Introduction

• A lack of study on the security of 3D face recognition systems against
physical-realizable adversarial attacks.

• Present physical 3D adversarial attacks can only generate adversarial points
adjacent to the surface, limiting the attack success rate.

• Present physical 3D adversarial examples are not resistant to random rotation
and transition, which are not practical in the real world.



Overview
1 Introduction
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Figure: A demonstration of our attack. We project optical noises on the 3D faces to
generate adversarial point clouds. Our attack modifies fewer points than previous attacks
and does not need the adversarial points to be adjacent to the 3D surface.



Contributions
1 Introduction

• We are the first to realize the end-to-end physical adversarial attack against
3D face recognition through adversarial illuminations.

• Our attack can generate adversarial points at any position by utilizing the 3D
reconstruction principle.

• Our attack involves random 3D transformations in the attack pipeline, which
significantly improve adversarial examples’ robustness to random movements.

• We attack both point-cloud-based and depth-image-based 3D face recognition
models. Compared with previous attacks, our method needs fewer
perturbations with a high success rate in experiments.
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Structured-light-based 3D reconstruction
2 Background

• Structured light imaging is a popular method of acquiring 3D face data due to
its high precision and superiority in uniform textures.

• According to the 3D reconstruction principles, it can be classified as the
phase-shifting-based algorithms and the DNN-based algorithms.
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Overview of attacks
3 Methodology

• We propose phase shifting attack and phase superpositon attack for
phase-shifting-based and DNN-based 3D reconstruction algorithms
respectively.
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Figure: Phase shifting attack Figure: Phase superposition
attack



Phase shifting attack
3 Methodology

• Directly modify the projected
patterns.

• The depth changes are mapped to
pixel transition in the projected
images through an opposite process
of 3D reconstruction.

• We project the adversarial point
displacements onto the normal
vector of the camera imaging plane.

• This projection can make the 3D
pixel shifting only change the depth
in the camera view. Figure: Phase shifting attack algorithm



Phase superposition attack
3 Methodology

• In the real world, the adversary usually cannot directly modify the projected
image.

• The adversary uses an additional projector to project additive noises on the
faces, resulting in dodging or impersonation attacks.
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Figure: The attack procedure of phase superposition attack.



Lambertian reflection model
3 Methodology

• We use the Lambertian reflection model to simulate the real-world
face-lighting process.

• The process can be formulated as
I(x) = a(x)n(x) · (sp1(x) + sp2(x)). (1)
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3D transform invariant loss
3 Methodology

• When attacking a physical system, the distance and head may move
unexpectedly.

• We propose 3D transform invariant loss to make the adversarial point clouds
can generate consistent results when the head rotates or moves.
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Experiment setup
4 Experiment results

• Datasets: Bosphrus, Eurecom, SIAT-3DFE
• 3D face recognition model: Pointnet, Pointnet++, DGCNN, CurveNet
• Compared attacks: C&W, 3DAdv, KNNadv, GeoA3
• Physical settings: one industry camera, two home projectors
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