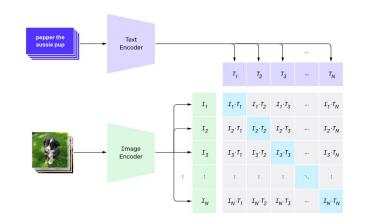
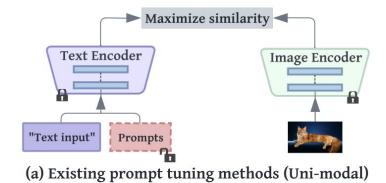
MaPLe: Multi-modal Prompt Learning CVPR-23


¹Muhammad Uzair Khattak ¹Hanoona Rasheed ¹Muhammad Maaz ^{1,2}Salman Khan ^{1,3}Fahad Shahbaz Khan ¹Mohamed Bin Zayed University of AI, ²Australian National University, ³Linköping University

Background

- Foundational Vision-Language (VL) models
 - Pretrained on large image-text pairs
 - Typically trained using contrastive objectives
- Motivation to use
 - Open-vocabulary
 - Effectively transfer to downstream vision tasks
 - Generalizable

CLIP used for zero-shot classification (Radford et al., 2021)

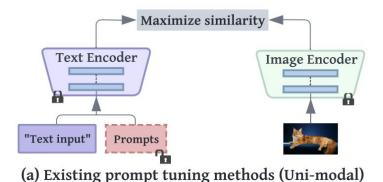

Problem statement

Adapting large scale Vision-Language models like CLIP for image-recognition tasks

- With limited downstream data (e.g few-/zero-shot)
- Without compromising on inherent generalization of CLIP

Existing solutions

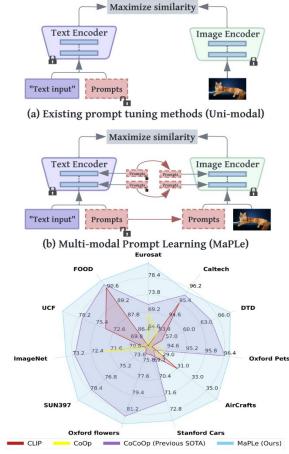
- Naive fine tuning (not trivial)
 - Data scarcity (few-shot/zero-shot) & training instability
 - $\circ \quad \ \ {\rm Risk \ of \ losing \ generalization}$
- Inspired from NLP
 - Performs prompt tuning at language side



Limitations in existing methods

- Focus on uni-modal solutions
 - Ignores adapting the visual branch for better transfer

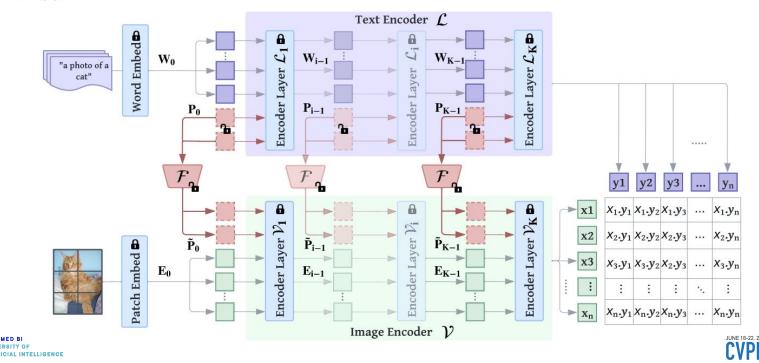
- Performs partial prompting
 - Prompting should instruct the model completely not partially



Our contributions

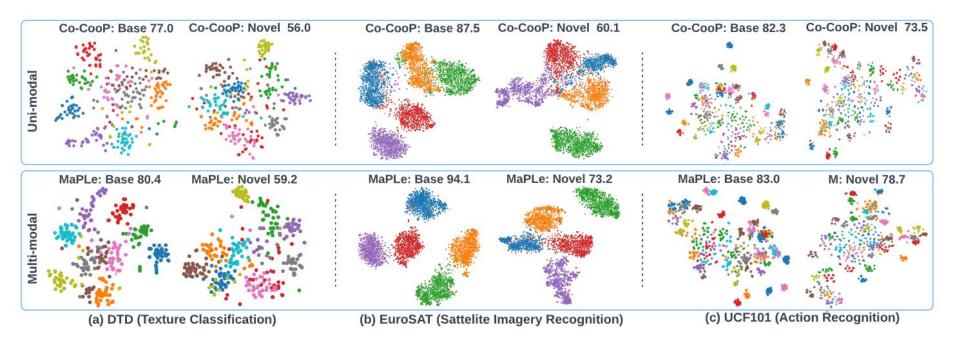
- We propose multi-modal prompt learning paradigm
 - Dynamically adjust both branches of CLIP for better transfer

- Hierarchical Vision-Language Deep Prompting
 - Learning of stage-wise feature relationships to allow rich context learning.
- Vision and Language Prompt Coupling
 - Ensure mutual synergy and discourages learning uni-modal solutions



5

MaPLe architecture


- Hierarchical prompts in vision and language branches of CLIP
- Vision prompts conditioned on Language prompts via coupling function $\mathcal{F}(\cdot)$
- $\mathcal{F}(\cdot)$ Implemented as linear projection layer

6

Visualizations

Experiments

We conduct experiments on three different generalization benchmarks:

- Base-to-novel generalization (11 datasets)
 - Splits dataset in to base and novel classes
 - Train on base classes, evaluate on base and novel classes
- Cross-dataset evaluation (10 datasets)
 - Train on ImageNet source dataset
 - Directly evaluate on cross-datasets
- Domain generalization (4 datasets)
 - Train on ImageNet source dataset
 - Evaluate on out of distribution datasets

Experiments: Base-to-novel generalization

- Effect of individual components
- MaPLe provides optimal performance

Method	Base Acc.	Novel Acc.	HM	GFLOPS
1: MaPLe shallow $(J = 1)$	80.10	73.52	76.67	167.1
2: Deep vision prompting	80.24	73.43	76.68	18.0
3: Deep language prompting	81.72	73.81	77.56	166.8
4: Independent V-L prompting	82.15	74.07	77.90	167.0
5: MaPLe (Ours)	82.28	75.14	78.55	167.0

Experiments: Base-to-novel generalization

- Comparison with existing methods
- Co-CoOp is the previous state-of-the-art method

(a) Average over 11 datasets					
	Base	Novel	HM		
CLIP	69.34	74.22	71.70		
CoOp	82.69	63.22	71.66		
Co-CoOp	80.47	71.69	75.83		
MaPLe	82.28	75.14	78.55		
	+1.81	+3.45	+2.72		

(a) Avarage over 11 detects

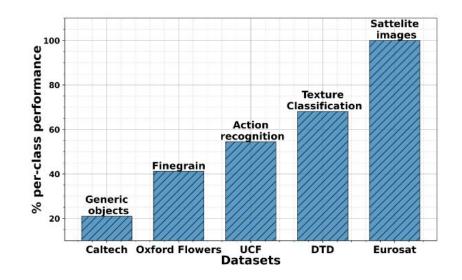
Experiments: Cross-dataset transfer

• ImageNet trained model directly evaluated on cross-datasets

in the second se	Source	Target										
	the seed	er er lo	Official and a state of the second se	Standing	A) out of a low	x00101	A.	Sch30	and	AL SOUTH	Corley	And A
CoOp Co-CoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74
MaPLe	70.72	93.53	90.49	65.57	72.23	86.20	24.74	67.01	46.49	48.06	<u>68.69</u>	66.30

Experiments: Domain generalization

• ImageNet trained model directly evaluated on out-of-distribution datasets


	Source	Target					
	ImageNet	ImageNetV2	ImageNet-S	ImageNet-A	ImageNet-R		
CLIP	66.73	60.83	46.15	47.77	73.96		
CoOp	71.51	64.20	47.99	49.71	75.21		
Co-CoOp	71.02	64.07	48.75	50.63	76.18		
MaPLe	70.72	64.07	49.15	50.90	76.98		

Further analysis on MaPLe

- Compared to Co-CoOp, MaPLe improves per-class performance as domain-shift of data increases (left to right)
- MaPLe is favourable for datasets with high domain-shifts

Conclusion

- Existing prompt learning methods
 - Adapts CLIPs partially
- We propose multi-modal prompting paradigm
 - Adapts both branches of CLIP for multi-modal representation learning
 - Integrates VL Deep Prompting for hierarchical context learning
 - VL Prompt Coupling for ensuring mutual synergies b/w VL modalities
- Improves generalization of CLIP towards 3 downstream tasks

