

Masked Images Are Counterfactual Samples for Robust Fine-tuning

Yao Xiao Ziyi Tang Pengxu Wei* Cong Liu Liang Lin

*Corresponding author

Sun Yat-sen University

Poster: THU-AM-363

Project/Code: https://github.com/Coxy7/robust-finetuning/

Robustness to distribution shift

Figure source: Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Fine-tuning can reduce the robustness

• Trade-off between ID and OOD performance

Figure source: Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR, 2022.

Overview

Overview

Fine-tuning can reduce the robustness: a causal perspective

 Fine-tuned models tend to rely on both semantic & non-semantic representations (h_s, h_d) for the prediction of image semantics s

Fine-tuning can reduce the robustness: a causal perspective

- Fine-tuned models tend to rely on both semantic & non-semantic representations (h_s, h_d) for the prediction of image semantics s
- The correlation between h_d and s is unstable under distribution shift

Masked images as counterfactual samples

- Masking based on Class Activation Map (CAM):
 - Context-mask: h_d
 - Object-mask: h_s

• Distillation with the pre-trained model based on masked images x_{cf}

 $\mathcal{L} = \mathcal{L}_{CE}(g(f(x)), y) + \beta \mathcal{L}_{MSE}(\hat{f}(x_{cf}), f(x_{cf}))$

x: factual sample; x_{cf} : counterfactual sample; *y*: label *f*, \hat{f} : backbone of fine-tuning/pre-trained model; *g*: classifier

• Distillation with the pre-trained model based on masked images x_{cf}

$$\mathcal{L} = \mathcal{L}_{CE}(g(f(x)), y) + \beta \mathcal{L}_{MSE}(\hat{f}(x_{cf}), f(x_{cf}))$$

- Refilling
 - To enlarge the **disagreement** between fine-tuning and pre-trained model on x_{cf}

- Refilling
 - To enlarge the **disagreement** between fine-tuning and pre-trained model on x_{cf}

- Refilling
 - To enlarge the **disagreement** between fine-tuning and pre-trained model on x_{cf}

Validation of masking and refilling strategies

Hyper-parameters:

Random-mask:

• Masking rate in {0.25, 0.5, 0.75}

Context/Object-mask:

• CAM score threshold in {0.3, 0.4, 0.5, 0.6}

Conclusions:

- 1. Masking > no masking
- 2. Refilling > no refilling
- 3. Object-mask > random/context mask

Comparison with existing methods

In-distributi			on (ID) Out-of-distribution (OOD)					
Model	Method	IN	IN-V2	IN-R	IN-Sketch	ObjectNet	IN-A	OOD avg.
	Zero-shot [32]	63.4	55.9	69.3	42.3	44.5	31.4	48.7
	Vanilla fine-tuning	75.9	64.7	57.0	39.8	39.5	20.0	44.2
CLIP	WiSE-FT [†] [43]	76.6	66.6	70.2	47.1	46.3	31.9	52.4
ViT-B/32	Uniform soup [‡] [42]	80.0	68.6	66.6	47.7	46.1	29.2	51.6
	Ours (multi-fill)	77.9	67.7	68.1	46.6	47.5	33.0	52.6
	Ours (single-fill)	77.5	67.1	<u>69.7</u>	46.9	48.0	33.8	53.1
CLIP ViT-B/16	Zero-shot [32]	68.3	61.9	77.6	48.3	54.0	50.1	58.4
	Vanilla fine-tuning	80.7	70.4	64.0	45.1	49.1	35.2	52.8
	LP-FT [23]	81.7	71.6	72.9	48.4	/	49.1	/
	WiSE-FT [43]	81.7	72.8	78.7	53.9	57.3	52.2	63.0
	Ours (multi-fill)	82.5	73.4	76.4	52.7	56.8	52.0	62.3
	Ours (single-fill)	82.4	73.4	78.1	<u>53.4</u>	57.9	53.5	63.3

• The proposed method is particularly effective when objects are shown in **unusual contexts** (ObjectNet, ImageNet-A)

Discussion: WiSE-FT [1]

Accuracy on the reference distribution (e.g., ImageNet) (Image source: [1])

[1] Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR, 2022.

- Weight-space ensemble of the zero-shot model & our model is less meaningful
- Adding an distillation loss with WiSE-FT teacher slightly improves our model

[1] Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR, 2022.

Conclusion

- The spurious correlation between semantic and non-semantic factors in downstream data may account for the robustness degradation in fine-tuning.
- Masked images can be effective counterfactual samples for robust fine-tuning, breaking the spurious correlation.

• Weight-space constraints may be sufficient but not necessary for maintaining the robustness of the pre-trained model.

Thanks!

Paper: https://arxiv.org/abs/2303.03052

Project/Code: https://github.com/Coxy7/robust-finetuning/