## **Making Vision Transformers Efficient from A Token Sparsification View**

Shuning Chang<sup>1\*</sup> Pichao Wang<sup>2†</sup> Ming Lin<sup>2‡</sup> Fan Wang<sup>2</sup> David Junhao Zhang<sup>1</sup> Rong Jin<sup>2</sup> Mike Zheng Shou<sup>1§</sup> <sup>1</sup>Show Lab, National University of Singapore <sup>2</sup>Alibaba Group {changshuning, junhao.zhang}@u.nus.edu, {fan.w, jinrong.jr}@alibaba-inc.com, minglamz@amazon.com, {pichaowang, mike.zheng.shou}@gmail.com

TUE-PM

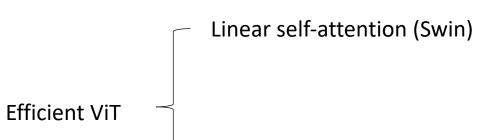


https://github.com/changsn/STViT-R



https://arxiv.org/abs/2303.08685

# **Overview**



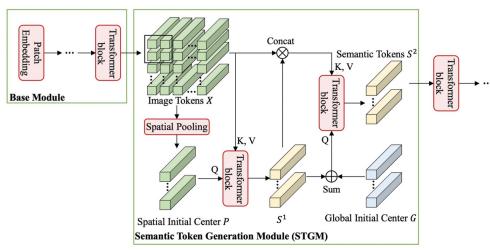
Token Sparsification (Ours)

## **Issues in token sparsification**

- (i) Dramatic accuracy drops;
- (ii) Application difficulty in the local vision transformer;

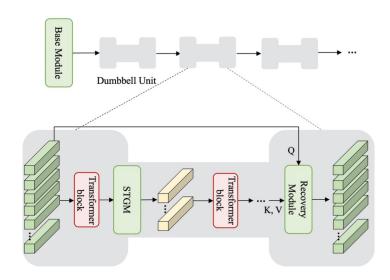
(iii) Non-general-purpose networks for downstream tasks.

STViT



A few tokens with high-level semantic representations can achieve both high performance and efficiency.

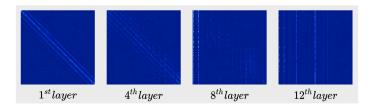
STViT-R



Restore full resolution feature map to achieve downstream tasks.

### Observation

- (i) Unlike local CNNs, ViT discretizes feature map as tokens.
- (ii) Discrete tokens are more beneficial for optimization [1].
- (iii) There are only several vertical lines in the deep layers in the attention maps in different transformer layers.



Employing a few discrete tokens with high-level semantic information can potentially achieve both high performance and efficiency.

[1] Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, and Rong Jin. Scaled relu matters for training vision transformers.

# Method

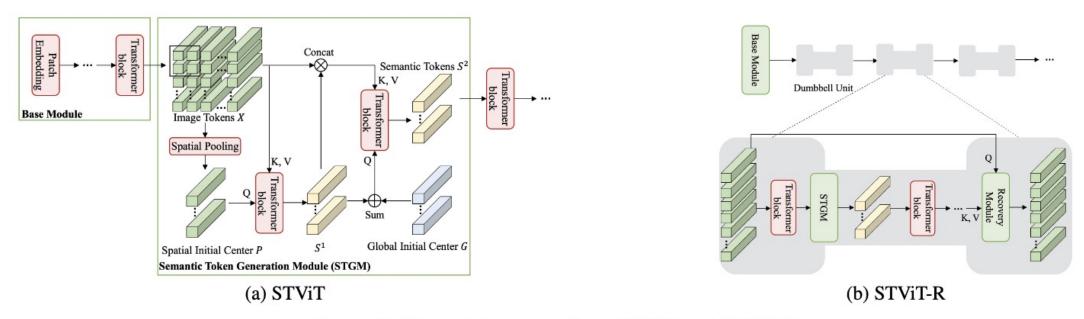


Figure 2. The architectures of our STViT and STViT-R.

#### Semantic token generation module (STGM)

Self-attention can conduct cluster center recovery (Sup. A.7)

- Spatial semantic tokens
- Global semantic tokens

#### **STViT** in local vision transformers

#### **STViT for downstream tasks**

- Dumbbell units
- Recovery module

# Results

• Image classificationx

| Model        | Metrics           | Base  | No. of semantic tokens |            |             |             |  |
|--------------|-------------------|-------|------------------------|------------|-------------|-------------|--|
| Model        | inicules          | Buse  | 16                     | 36         | 64          | 100         |  |
|              | Top-1 Acc(%)      | 72.2  | 72.2(+0.0%)            | 72.7(+0.5) | 73.0(+0.8)  | 73.2(+1.0)  |  |
| STViT-DeiT-T | FLOPs(G)          | 1.26  | 0.53(-58%)             | 0.60(-52%) | 0.71(-44%)  | 0.86(-32%)  |  |
|              | Throughput(img/s) | 2752  | 5511(+101%)            | 4769(+74%) | 4214(+53%)  | 3551(+29%)  |  |
|              | Top-1 Acc(%)      | 79.8  | 79.8(+0.0)             | 80.1(+0.3) | 80.5(+0.7)  | 80.6(+0.8)  |  |
| STViT-DeiT-S | FLOPs(G)          | 4.58  | 1.91(-58%)             | 2.20(-52%) | 2.62(-43%)  | 3.16(-31%)  |  |
|              | Throughput(img/s) | 1408  | 2891(+105%)            | 2542(+80%) | 2229(+58%)  | 1837(+30%)  |  |
|              | Top-1 Acc(%)      | 81.8  | 81.8(+0.0)             | 82.2(+0.4) | 82.6(+0.8)  | 82.7(+0.9)  |  |
| STViT-DeiT-B | FLOPs(G)          | 17.58 | 7.31(-58%)             | 8.44(-52%) | 10.04(-43%) | 12.13(-31%) |  |
|              | Throughput(img/s) | 626   | 1308(+110%)            | 1150(+85%) | 1087(+61%)  | 826(+33%)   |  |

Table 1. Applying STViT to DeiT-T, DeiT-S, and DeiT-B. The top-1 accuracy, complexity in FLOPs, and throughput are reported for different numbers of semantic tokens.

| Model        | Metrics           | Base | Move        | No. of semantic tokens |             |             |  |
|--------------|-------------------|------|-------------|------------------------|-------------|-------------|--|
| Model        | Metrics           | Dase | STGM        | 4                      | 9           | 16          |  |
|              | Top-1 Acc(%)      | 81.3 | 81.0(-0.3%) | 80.8(-0.5)             | 81.5(+0.2)  | 81.8(+0.5%) |  |
| STViT-Swin-T | FLOPs(G)          | 4.5  | 3.14(-30%)  | 2.99(-34%)             | 3.43(-24%)  | 4.06(-10%)  |  |
|              | Throughput(img/s) | 878  | 1124(+29%)  | 1128(+29%)             | 1061(+22%)  | 1008(+15%)  |  |
|              | Top-1 Acc(%)      | 83.0 | 82.8(-0.2%) | 82.4(-0.6%)            | 83.0(-0.0)  | 83.1(+0.1%) |  |
| STViT-Swin-S | FLOPs(G)          | 8.7  | 5.95(-32%)  | 5.95(-32%)             | 6.53(-25%)  | 7.36(-15%)  |  |
|              | Throughput(img/s) | 551  | 739(+35%)   | 732(+34%)              | 691(+26%)   | 657(+20%)   |  |
|              | Top-1 Acc(%)      | 83.5 | 83.2(-0.3%) | 83.0(-0.5)             | 83.4(-0.1)  | 83.7(+0.2%) |  |
| STViT-Swin-B | FLOPs(G)          | 15.4 | 10.48(-32%) | 10.48(-32%)            | 11.51(-25%) | 12.97(-16%) |  |
|              | Throughput(img/s) | 415  | 558(+35%)   | 551(+33%)              | 521(+26%)   | 489(+19%)   |  |

| Table 2. Applying STViT to Swin-T, Swin-S, and Swin-B. The top-1 accuracy, complexity in FLOPs, and throughput are reported for |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| different numbers of semantic tokens in each window. Base indicates the corresponding original Swin model. Move STGM indicates  |  |  |  |  |  |
| changing the default position of STGM.                                                                                          |  |  |  |  |  |

| Model                    | Top-1 Acc | FLOPs(G)            | $\bigtriangleup$ |
|--------------------------|-----------|---------------------|------------------|
|                          | DeiT-S    |                     |                  |
| DynamicViT [31]          | 79.3      | 2.9(-37%)           | -0.5             |
| IA-RED <sup>2</sup> [30] | 79.1      | 3.2(-30%)           | -0.7             |
| PS-ViT [34]              | 79.4      | 2.6(-43%)           | -0.4             |
| TokenLearner [32]        | 76.1      | 1.9(-44%)           | -1.8             |
| DGE [33]                 | 79.7      | 3.1 (-49%)          | -0.6             |
| A-ViT [47]               | 78.6      | 3.6 (-39%)          | -0.3             |
| Evo-ViT [45]             | 79.4      | 3.0(-35%)           | -0.4             |
| EViT [24]                | 78.5      | 2.3(-50%)           | -1.3             |
| STViT(Ours)              | 79.8      | 1.91( <b>-58%</b> ) | -0.0             |
|                          | DeiT-B    |                     |                  |
| IA-RED <sup>2</sup> [30] | 80.3      | 11.8(-33%)          | -1.5             |
| DynamicViT [31]          | 81.3      | 11.2(-36%)          | -0.5             |
| PS-ViT [34]              | 81.5      | 9.8(-44%)           | -0.3             |
| TokenLearner [32]        | 83.7      | 28.7(-48%)          | -1.1             |
| Evo-ViT [45]             | 81.3      | 10.2(-33%)          | -0.5             |
| EViT [24]                | 80.0      | 8.7(-51%)           | -1.8             |
| STViT(Ours)              | 81.8      | 7.31( <b>-58%</b> ) | -0.0             |

#### • Downstream tasks

|                | $  AP^b$ | $AP_{50}^b$ | $AP_{75}^b$ | $AP_s^b$ | AP <sup>m</sup> | $AP_{50}^m$ | $\operatorname{AP}_{75}^m$ | $\operatorname{AP}_s^m$ | FLOPs(G)  |
|----------------|----------|-------------|-------------|----------|-----------------|-------------|----------------------------|-------------------------|-----------|
| Swin-S         | 51.8     | 70.4        | 56.3        | 35.2     | 44.7            | 67.9        | 48.5                       | 28.8                    | 194       |
| STViT-R-Swin-S | 51.8     | 70.6        | 56.1        | 36.7     | 44.7            | 67.8        | 48.6                       | 29.0                    | 134(-31%) |
| Swin-B         | 51.9     | 70.9        | 56.5        | 35.4     | 45.0            | 68.4        | 48.7                       | 28.9                    | 343       |
| STViT-R-Swin-B | 52.2     | 70.8        | 56.8        | 36.5     | 45.2            | 68.3        | 49.1                       | 29.5                    | 233(-32%) |

Table 5. Results on COCO object detection and instance segmentation under Cascade Mask R-CNN with  $3 \times$  schedule. The FLOPs are measured for backbones.

|   | Method  | Backbone       | mIoU   FLOPs(G |          |  |
|---|---------|----------------|----------------|----------|--|
| - | UperNet | Swin-S         | 49.3           | 49       |  |
|   | UperNet | STViT-R-Swin-S | 48.3           | 34(-31%) |  |
| - | UperNet | Swin-B         | 49.7           | 87       |  |
|   | UperNet | STViT-R-Swin-B | 48.9           | 60(-31%) |  |

Table 14. Results of semantic segmentation on the ADE20K val set. A multi-scale inference with resolution  $[0.5, 0.75, 1.0, 1.25, 1.5, 1.75] \times$  is applied. FLOPs and latency are measured in backbones with resolution  $512 \times 512$ .

# Thank you!