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We introduce the first data-driven feature tracker for event cameras

Real Time



Slowed Down

Our method predicts stable feature tracks in high-speed motion in 
which standard frames suffer from motion blur.
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• Difficulties to generalize to different scenarios due to unmodeled 
effects
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We propose the first data-driven feature 
tracker for event cameras

• Require extensive manual hand-tuning to adapt to different event 
cameras

• Difficulties to generalize to different scenarios due to unmodeled 
effects



Our method predicts the displacement ∆መfj of a feature by localizing a template 

patch 𝐏0 from a grayscale image 𝑰0 in subsequent event patches 𝐏𝑗 .
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The feature network encodes both patches using a correlation and 
recurrent layers into a single feature vector with spatial dimension of 1×1.
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Each feature track is independently processed by the feature network.
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To share information between features in the same image, we 
introduce a novel frame attention module.
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The frame attention module uses a self attention layer to share the information 
across the feature tracks and outputs the feature displacement ∆መfj.



Ground Truth Track

Predicted Track
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∆መfj: Predicted Displacement

∆fj: Ground Truth Displacement

ℓj: L1-Distance

We train our network on synthetic data by directly computing the L1-
Distance between the predicted ∆መfj and ground truth displacement ∆fj.
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To close the gap between synthetic and real data, we introduce a fine-tuning 
strategy, which triangulates and reprojects a 3D point using camera poses.



By directly transferring zero-shot from synthetic to real data, our tracker 
outperforms existing approaches in relative feature age by up to 120%.



This performance gap is further increased to 130% by adapting our
tracker to real data with a novel self-supervision strategy.
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Finally, our method predicts stable feature tracks in high-speed motion 
in which standard frames suffer from motion blur.

Slowed Down



Furthermore, we can combine our tracker with the frame-based KLT tracker
increasing the robustness of feature tracks in high-speed motion.



• We introduce the first data-driven feature tracker for event cameras, 
which leverages low-latency events to track features detected in a 
grayscale frame.

• Our data-driven tracker outperforms existing approaches in relative 
feature age by up to 130 % while also achieving the lowest latency.

Conclusion

Source Code: https://github.com/uzh-rpg/deep_ev_tracker
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