Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer

CVPR 2023 - WED-PM-011

Old Photos Characteristics

Scratch, hole, ...

Unstructured degradation

Blur, noise, ...

Unique artifact

Sepia color, color fading, ...

Previous Work's Solution

Output

Our Motivation

Old photos

Overall look and style remain like old photos input or even worse

Our Motivation

VICLab Video and Image Computing Lab

Overview of Our Solution

VICLab Video and Image Computing Lab

Overview of The Results

[42] Wan *et al*, CVPR 2020

OPR [42]

Better results even without using any old photos during training

Overview of The Results

[42] Wan *et al*, CVPR 2020

VICLab Video and Image Computing Lab Better results even without using any old photos during training

Inspiration from Photorealistic Style Transfer (PST)

Universal ability to perform style transfer for any photos without retraining to predefined styles

However, PST ...

Problem 1 – Is only able to use a **single reference**

✓ A single reference cannot match the whole semantics of a natural old photo e.g., no sky

✓ No corresponding region cause incorrect style transfer e.g., green sky

However, PST ...

Segmentation mask

Problem 2 – Require accurate segmentation mask for local style transfer

Old photo

✓ Segmentation mask is obtained by using ViT-Adapter [Chen et al, ICLR 2023]

✓ Unnatural PST results due to unreliable segmentation mask for old photo

However, PST ...

Problem 3 – Can produce unnatural global style transfer and cannot perform enhancement e.g., sharpening

✓ PST produces an unnatural global style transfer result even though the reference is related

✓ PST cannot perform enhancement as can be seen by blurry and noisy stylization result

Part 1 – MROPM-Net

VICLab Video and Image Computing Lab

Part 2 – Novel training strategy

KAIST

VICLab Video and Image Computing Lab

Video and

*Other datasets that have dense semantic segmentation masks can also be used e.g., ADE20K [54]

Style variant- / invariant- transformation

Style Variant Transformation (SVT)

Random color jittering, synthetic unstructured degradation i.e., blur, noise, resizing, and compression artifact*

Can change the statistics, i.e., mean and std, of certain regions

Style Invariant Transformation (SIT)

Random rigid transformation, i.e., rotation, flipping, translation (only for the region that can be translated)

Cannot change the statistics, i.e., mean and std, of certain regions

*Other types of degradations, e.g., scratches, can be included for better generalization to these types of degradations

Data generation examples for two references

Data generation examples for two references

Data generation examples for two references

Data generation examples for two references

SVT: Style variant transformation

SIT: Style invariant transformation

URF: Unmasked region filling using a different random image from the same dataset

Data generation examples for two references

SVT: Style variant transformation

SIT: Style invariant transformation

URF: Unmasked region filling using a different random image from the same dataset

VICLab Video and Image Computing Lab

*Additional details related to the network and training strategy can be found in the paper and supplementary material

Proposed Cultural Heritage Dataset (CHD)

- ✓ 644 old color photos from the 20th century
- ✓ Three national museums in South Korea
- ✓ Outdoor and indoor natural scenes of cultural heritage e.g., special exhibitions and excavation ruins
- ✓ Containing little structured degradations, e.g., scratches, but varying unstructured degradations and color degradations

Proposed Dataset – Comparison

۱Λ	٧/	Г	14	1
v	v	D		

	Era	1
RealOld [21]	Content type	
	Color space	
States and a state of the state	Resolution	1
Ours	Expert ground- truth	
	[11] Time-trave [21] Pik-fix, Xu	l re et a

	HWFD [11]	RealOld [21]	Ours
Number of images	224	200	644
Era	19-20 th century	-	20 th century
Content type	Face	Portrait	Indoor & outdoor natural scenes
Color space	Greyscale	Greyscale	Color
Resolution	133 x 133 until 1024 x 1024	-	1024 x 1024
Expert ground- truth	×	\checkmark	×

[11] Time-travel rephotography, Luo et al, TOG 2021

[21] Pik-fix, Xu et al, WACV 2023

- ✓ Our dataset has the **greatest number of images**
- ✓ Our dataset contains **indoor & outdoor natural scenes** which are more complex than face and portrait photos
- ✓ 130 old photos (~20% of the data) are augmented with references crawled from the internet for the evaluation

Experiments – Quantitative Evaluation

Synthetic data evaluation – ADE20K (different from training data)

Method	PSNR ↑	SSIM ↑	$LPIPS\downarrow$
ExColTran [50] + OPR-R	19.5796	0.7885	0.2563
ReHistoGAN [1] + OPR-R	<u>20.0458</u>	0.7987	<u>0.2109</u>
MAST [15] + OPR-R	19.0148	0.7853	0.2270
PCAPST [<mark>6</mark>] + OPR-R	19.1731	0.7908	0.2197
Ours	21.2212	<u>0.7919</u>	0.2027

Best PSNR and LPIPS, and comparable SSIM score

The method can effectively utilize the reference to jointly stylize and enhance the synthetically degraded images while preserving the structure

Experiments – Quantitative Evaluation

Real old photo evaluation

Method	$\mathbf{NIQE}\downarrow$	BRISQUE ↓	
OPR [42]	4.8705	21.4588	
ExColTran [50] + OPR	4.9415	18.8971	
ReHistoGAN [1] + OPR	4.8051	26.2557	
MAST [15] + OPR	4.8111	18.9555	
PCAPST [6] + OPR	4.7094	18.9860	
Ours – Single Reference	<u>3.4737</u>	<u>15.5152</u>	
Ours – Multiple References	3.4487	15.4180	

- ✓ Best NIQE and BRISQUE compared to other baselines in single-reference setting
- ✓ Further improves the performance by using multiple references

Experiments – Quantitative Evaluation

User study

Method	Top 1 (%)	Top 2 (%)	Тор 3 (%)	Top 4 (%)	Тор 5 (%)
OPR [42]	<u>17.44</u>	<u>39.83</u>	57.05	70.90	87.22
ExColTran [50] + OPR	1.62	5.13	10.77	24.87	47.27
ReHistoGAN [1] + OPR	7.91	32.27	<u>61.84</u>	83.80	<u>96.92</u>
MAST [15] + OPR	5.68	21.62	41.92	66.33	86.20
PCAPST [6] + OPR	10.98	28.50	44.87	61.97	84.66
Ours	56.37	72.69	83.55	92.14	97.74

Our method outperforms other baselines with a 56.37% chance selected as the best method

Experiments – Ablation Study

Ablation study for single stylization subnet

✓ w/o alignment: fails to accurately transfer the local styles of objects

 \checkmark w/o fusion: coarse local and global stylization

Experiments – Ablation Study

Ablation study for merging-refinement subnet

Real old photo evaluation

Effectivity of merging-refinement subnet in synthetic data

Predicted masks are generated by thresholding spatial attention output

The subnet can select relevant regions from multiple references to transfer their styles to the corresponding region in the old photo input

Experiments – Qualitative Evaluation

Better qualitative results compared to the baselines (baselines use reference 1)

Additional Results – Old Photos in The Wild

Our method can better match the corresponding semantic regions between the old photo and multiple references even when the viewpoint and scale are different

Additional Results – Semantic Photorealistic Style Transfer

Our method can be used for semantic photorealistic style transfer (PST)

Baselines use reference 1 as their reference

Baselines use reference 1 as their reference

Baselines use reference 1 as their reference

Baselines use reference 1 as their reference

*Additional results and ablation studies can be found in the paper and supplementary material

Thank you! For more details, please visit: <u>kaist-viclab.github.io/old-photo-modernization</u>

Modernizing Old Photos Using Multiple References via Photorealistic Style Transfer

June 21, 2023 – PM – Number 11 WED-PM-011

