

Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model

Takehiro Aoshima, Takashi Matsubara Osaka University, Japan TUE-PM-175

Preview

Deep generative models

- are known for generating high-quality images.
- X do not provide an inherent way to edit images semantically.
- ➤We address semantic image editing for deep generative models.

Preview

We propose the method, which provides

- higher-quality image editing
- commutative image editing

by learning semantic commuting vector fields in the latent space.

Background

Methods for image editing;

- Training models under constraints
 X Requiring computationally expensive training.
 X Conflicting with the quality of image generation.
- Image-to-image translation
 - X Requiring computationally expensive training.
 - X Limiting editing to be discontinuous.

horse \rightarrow zebra

Zhu+, ICCV2017.

Background

Methods for image editing;

- Finding linear or nonlinear paths in latent space of pretrained models
 - ✓ Not requiring computationally expensive training.
 - ✓ Not limiting editing to be discontinuous.

Related Work

Linear methods (e.g., [1])

- discover linear paths.
- manipulate the latent code along the axis of an oblique coordinate system.
- ✓ provide commutative edits.
- X sometimes fail to discover semantic paths.

[1] Voynov and Babenko, ICML2020.

Related Work

Nonlinear methods (e.g., [2])

- discover nonlinear paths by vector fields.
- manipulate the latent code along a vector field.
- ✓ discover more variety of paths.
- X do not provide commutative edits.

[2] Tzelepis+, ICCV2021.

Proposed Method

We propose the method, which

- discovers nonlinear paths
- ✓ provides commutative edits

by learning semantic curvilinear coordinates.

commuting vector fields

Experiment

We adopted the unsurpervised training framework for GANs.

Pretrained GANs

- SNGAN trained on MNIST dataset.
- SNGAN trained on AnimeFaces dataset.
- BigGAN trained on ILSVRC dataset.
- ProgGAN trained on CelebA-HQ dataset.
- StyleGAN2 trained on CelebA-HQ dataset.
- StyleGAN2 trained on LSUN Car dataset.

Comparison methods

- LinearGANSpace (a linear method) [1]
- WarpedGANSpace (a nonlinear method) [2]

[1] Voynov and Babenko, ICML2020. [2] Tzelepis+, ICCV2021. 9

• We visualize the results of editing attributes of an image sequentially.

O: original, V: vertical position, B: background, S: size

• We visualize the results of editing attributes of an image sequentially.

• We visualize the results of editing attributes of an image sequentially.

O: original, D: dark colored-hair, L: hair length. SNGAN + AnimeFaces.

Differences between images with edits of two attributes applied in different order (%).

CelebA-HQ+StyleGAN2	$\mathbf{A}\mathbf{+G}$	$\mathbf{R}\mathbf{+}\mathbf{P}$	$\mathbf{B} + \mathbf{Y}$
Linear	$0.01 \ / \ 0.05$	$0.02/\ 0.07$	$0.02 \ / \ 0.15$
Nonlinear	$11.40 \ / \ 6.62$	$3.15 \ / \ 3.46$	$1.28\ /\ 2.22$
Ours	$\underline{0.07}$ / $\underline{0.35}$	$0.05 \ / \ 0.62$	$\underline{0.08}$ / $\underline{0.55}$
A: "age", G: "gender", R: "race" B: "bangs", P: "pitch", Y: "yaw".			
The difference of attribute score.			

Results (quality of editing)

CelebA-HQ, smile.

Results (quality of editing)

CelebA-HQ, smile.

16

Conclusion

• We propose to learn semantic curvilinear coordinates on the latent space.

- We demonstrate that the proposed method provides
- higher-quality
 commutative
 image editing.